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Why (Low-D) Quantum Spin Systems are interesting:

Quantum Spin Systems are inherently strong coupling problems:

correlated 
electron
 models strong interaction limit

Quantum Spin 
Models

 strong interactions are interesting as they are 
expected to lead to new collective behaviour



D=3 “Conventional Behaviour”: Spontaneous Symmetry 
Breaking of spin rotational symmetry at low T; 
Physics of Long-Range Order (spinwaves)

Dimensionality

Spinwaves determine physics over large range of T
and E (even far above TN)

Look at Frustrated Systems to 
avoid simple SSB scenario; but 
physics usually well described 
classically.

Basic physics is well understood.



D=2 Quantum Fluctuations are stronger: SSB only at 
T=0 (Mermin-Wagner).

Dimensionality

Frustrated systems may realize new quantum 
states of matter: Quantum Spin Liquids

(layered 
materials)

very interesting, but difficult to address 
theoretically by analytic or numeric means.



D=1 Quantum Fluctuations are very strong: SSB not 
even at T=0 (Mermin-Wagner).

Dimensionality

Exotic Quantum Spin Liquid States are abundant 
in D=1.

(chain 
materials)

- Special techniques (integrability, bosonization, DMRG, insert your 

favourite method here) allow in depth analysis.
- High-resolution experiments on dynamical properties for 
many materials.
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Paradigm 1: spin-1/2 Heisenberg Chain

👍👍

- Gapless spin liquid (ground state disordered for all T≥0)

- Excitations: fractionalized spin-1/2 objects “spinons”

- T=0: quantum critical system (power-law decays of correlations)

- low energy properties: Luttinger Liquid

Faddeev&Takhtajan ‘84

Hulthen ‘38

Luther&Peschel ’75
Haldane ‘81
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- Gapless spin liquid (ground state disordered for all T≥0)

- Excitations: fractionalized spin-1/2 objects “spinons”

- T=0: quantum critical system (power-law decays of correlations)

- low energy properties: Luttinger Liquid

Faddeev&Takhtajan ‘84

Hulthen ‘38

Luther&Peschel ’75
Haldane ‘81

Extremely interesting! Remains object of much recent 
work (e.g. threshold singularities).

Glazman, Imambekov, 
Pustilnik, Khodas,...
Affleck, Pereira, White, 
Sirker...
Zvonarev, Cheianov, 
Giamarchi
’06 -’11



👍👍

A different talk !



Gapped Quantum Spin Chains & Ladders

A. Integer Spin Heisenberg Chains

B. 2-Leg Heisenberg Spin-1/2 Ladders

S=1/2J

J

(S=1,2,3,...)

CsNiCl3, NDMAP, YBaNiO5...

Haldane ’83, Affleck ’90

Kenzelmann et. al. ‘01
Zaliznyak et. al. ’01
Zheludev et. al. ‘04
Xu et. al. ‘07

Dagotto et. al. ’92, Shelton et. al. ’96, 
Schmidt&Uhrig ’05 ...

Notbohm et. al. ’07; Ruegg et. al. ‘08, 
Lake et. al. ’10, Thielemann et. al. ‘09
Bouillot et. al. ’11, Tennant et. al. ’12,
Schmidiger et. al. ’12 ...

CuNitrate, (C5H12N)2CuBr4, CaCu2O3, La4Sr10Cu24O41, 
DIMPY ...



C. Field-Induced Gap spin-1/2 chain materials

D. Transverse Field Spin-1/2 Chain

Dender et al ’97, Asano et al ’00, ’02, 
Feyerherm et al ’00, Kohgi et al ’01, 
Zvyagin et al ‘04, ’05...

Oshikawa&Affleck ‘97, ‘02
Essler&Tsvelik ’97, Essler ’99, ...

CuBenzoate, CDC, Cu-Pyrimidine, Yb4As3,...

Cs2CoCl4 , CsCoBr3 , CsCoCl3 , TlCoCl3, ...

Nagler et al ’82; Kenzelmann et al ’02;
Oosawa et al ‘06

Dmitriev, Krivnov&Ovchinnikov ‘02
Caux, Essler&Loew ’03
Coldea et al (unpublished)



E. J1-J2 Model a.k.a. 2-leg zigzag ladder

G. Transverse Field Ising Chain

Haldane ’82, White&Affleck ’96, 
Eggert ’96, Nersesyan et al ’98, ...

SrCuO2, LiCuVO4 (ferromagnetic J1),...

CoNb2O6 

Coldea et al ‘10

Pfeuty ’70, Wu et al ’76, Vaidya&Tracy ’78
Cardy&Mussardo ’90, Yurov&Zamolodchikov ‘91

F. Dimerized Spin-1/2 Chain

CuGeO3 

J2>0.2411J1>0

Uhrig&Schulz ’96, Essler, Tsvelik&Delfino ‘96
Knetter&Uhrig ’00, Orignac ’04,...



Spin-S Heisenberg model with S>>1.

staggered component:
smooth component:

Constraint:

Naive Continuum Limit: 

Haldane ’83, 
Affleck ’89

Field Theory Limit of Quantum Spin chains



Commutators:

solved by

Constraint: n⋅n=1O(3) nonlinear
sigma model



When does this QFT describe the lattice model ?

- large distances, late times (for dynamics)

- low energies: 

- gap much less than cutoff → 



D. Transverse Field Spin-1/2 Chain

C. Field-Induced Gap spin-1/2 chain materials

E. J1-J2 Model a.k.a. 2-leg zigzag ladder

J2>0.2411J1>0

Sine-Gordon model @
t

⇥ = �@
x

�

� = �(H)



C. Field-Induced Gap spin-1/2 chain materials

Sine-Gordon model @
t

⇥ = �@
x

�

� = �(H)

C.N. Sine R. Gordon



D. Transverse Field Spin-1/2 Chain

C. Field-Induced Gap spin-1/2 chain materials

E. J1-J2 Model a.k.a. 2-leg zigzag ladder

J2>0.2411J1>0

Sine-Gordon model @
t

⇥ = �@
x

�

� = �(H)



F. Dimerized Spin-1/2 Chain

G. Transverse Field Ising Chain

Majorana (real) fermion

B. 2-Leg Heisenberg Spin-1/2 Ladders

4 “Ising models”



These relativistic QFTs are integrable (the lattice models are not!)

use integrability to determine 
dynamical 

correlation functions



These relativistic QFTs are integrable (the lattice models are not!)

use integrability to determine 
dynamical 

correlation functions

Which ones?



Scattering Experiments

Scattering Experiments (neutrons, light, electrons) measure 
imaginary parts of retarded 2-point functions of local operators

Inelastic neutron scattering experiments measure



What we want to calculate: Spin-S Heisenberg Chain

large integer S, low energies

Constraint: n⋅n=1O(3) nonlinear
sigma model

Susceptibility
around k=π/a0:

around k=0:
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Integrable QFTs

.

p  a

p  a

n

n n

1 1

1 1

np  b
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Basis States:

Total Momentum:

Total Energy:

|n>=|p1,...,pn>a1...an 

Pn= ∑j=1 pj

En=∑j=1 ε(pj) ≥ nΔ

all momenta
conserved 

individually!

Elementary excitations scatter purely elastically



Remarks:

1. Elementary excitations usually very complicated in terms of the 
fields defining the theory (solitons rather than modes of field)

2. Elementary excitations are neither bosons nor fermions:
generalized commutation relations (Faddeev-Zamolodchikov algebra)

interpolates between fermions (|p-q| small) and bosons (|p-q| large)



“Form Factor Bootstrap Approach”

 Exact 2-particle
S-matrix

(Karowski/Weisz ’78, Smirnov ’93, Lukyanov ’95, Delfino/Mussardo ’95, Balog/Niedermaier 
’97, Babujian/Karowski ‘99...)

Exact Matrix elements 
of local operators

O(0,0) |m〉〈n|

scattering 
factorizable

consistency

“crossing”
“Watson’s equations”
“minimal analyticity”
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T=0 Dynamical Structure Factor



T=0 Dynamical Structure Factor

∑m |m〉〈m|



T=0 Dynamical Structure Factor

for ω<nΔ at most n-1 part. states contribute ⇒ exact results.



T=0 DSF for O(3) nonlinear sigma model at q≈π

(Balog and Niedermaier ’97, Affleck and Horton ’99, Essler ’00)
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→ very little spectral weight above the magnon peak.



sine-Gordon model & field-induced gap systems

where h=const H

elementary excitations: soliton, antisoliton and several(H) breathers

breather vs
soliton gaps
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(delta-function breather peaks have 
been broadened by hand to show the 

spectral weight)
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threshold singularity on top
of a scattering continuum.



Measured DSF for CDC Kenzelmann et al ‘04



Measured DSF for CDC Kenzelmann et al ‘04
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s



All of this was for T=0 - how about T>0?
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T>0 INS Studies of Gapped Quantum Spin Chains

A. Integer Spin Heisenberg Chains
B. 2-Leg Heisenberg Spin-1/2 Ladders
C. Dimerized Heisenberg Spin-1/2 Chains 

(Xu et al ’00, ‘07, Kenzelmann et al ’01)

(Zheludev et al ’08, Ruegg et al ‘10)

(Xu et al ’00, Tennant et al ’09)

T=0: spin singlet ground state & gapped triplet of coherent 
“magnon” excitations

CuNitrate
(D.A. Tennant et al ’09)

P

E

Gap

“δ-function”arising
from single particle



Linewidth and “T-dependent gap”

(A. Zheludev et al ’08) 2-leg spin-1/2 ladder

(A) Line broadens with
increasing T.

(B) Maximum shifts in energy:
“T-dependent gap”.



Thermally Activated Scattering

(D.A. Tennant et al ’09, ’12)

asymmetric broadening 
of magnon line

Thermally activated 
scattering

magnon already present in 
state of thermal equilibrium 

changes its spin

CuNitrate



Why T>0 dynamics is a difficult problem

Dynamical Structure 
Factor

T=0:

T>0:

Only need ground state and 1 magnon excitation

Have to deal with a finite density of magnons !



single particle
I(t,  )q

t¡(  )q

T=0

multiparticle
continuum

T>0
I(t,  )

t¡(  )q

q

Lineshape of weakly interacting gapped fermions

Line-broadening gives fingerprint of interactions between particles. 

→T-independent. Need interactions to get non-trivial lineshape. 

• Dynamical Response of weakly interacting, massive particles 

• Single-particle spectral function of non-interacting fermions at T>0 

  Σ(ω,q,T)calculable in 
(Matsubara) PT for low T. 



Semiclassical Approach

Consider gapped 1D quantum magnet with coherent single-
particle excitation at T=0, dispersion ε(q), gap Δ= ε(Q)

(e.g. Haldane-gap chains, 2-leg ladder, transverse-field Ising model)

 DSF    S(ω,q,T=0) ∼ A(q) δ(ω-ε(q)) + multi-particle

For “low T” the delta-function broadens in a 
universal Lorentzian way (at q≈Q) as

S(ω,q,T>0) ∼ A(q) τ-1(T) [(ω-ε(q))2+τ-2(T)]-1 + multi-particle

widely used to analyze neutron data

Questions: Regime of applicability? How to go beyond?

(Sachdev, Damle ’98)
(Rapp&Zarand ’06,’09)



Dynamical Correlations at T>0

Basis of Hamiltonian eigenstates: H |r〉= Er |r〉

Magnon Gap ⇒ Er≈rΔ

(LeClair et al ’96
LeClair/Mussardo ’99
Konik ’03 .....)



Dynamical Correlations at T>0

Basis of Hamiltonian eigenstates: H |r〉= Er |r〉

Magnon Gap ⇒ Er≈rΔ

Must be regularized!

(1)  Finite Volume Regularization 
(2) Infinite Volume Regularization

(Essler&Konik ’08, Pozsgay& Takacs ‘08)
(Essler& Konik ‘09)



Dynamical Correlations at T>0

Formally we have: Er,s(ω,q)= O(e-rβΔ)

s

.

..
....{ ...}r r

Ers

“Bare clusters”



Dynamical Correlations at T>0

Formally we have: Fr,s(ω,q)= O(e-sβΔ) 

Partition Function:

r

.

..{r
Z



Low-Temperature Expansion

Define “linked clusters”:
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low-T expansion for χ(ω,q):

Problem: subleading (in exp(-βΔ)) terms in χ(ω,q) more and more
divergent when ω2 → ε2(q)

Solution: 
(1) define Σ(ω,q) through

(2) Match expansion

to LTE ⇒ Σ(ω,q,T)

(LTE)



Results for T>0 Lineshape in O(3) nlΣm

DSF at q=π/a0 for integer spin-S Heisenberg chain at low energies

• width∝T exp(-βΔ)
• height∝T-1 exp(βΔ)
• lineshape Lorentzian for
  T<<Δ, ω≈Δ ⇒ agrees w.

  semiclassical approx.
  (Damle/Sachdev ’98)

• lineshape asymmetric for
  any T and ω≠Δ
• asymmetry increases w. T

Damle/Sachdev result recovered at rather low T<0.1Δ
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Higher Orders in Low-T Expansion

Maximum moves in energy
“T-dependent gap”

Szz(ω,q=0,T)



Non-Integrable Models

e.g.  Alternating spin-½ Heisenberg Chain:

“Triplon” S=1 Excitation
Ground State

Triplon

ï

J JJ

J’=0 J’=0 J’=0
ï

J’=0 J’=0

J JJ

J’=0

combine low-T expansion with Perturbation Theory in J’

J’=0 limit: uncoupled dimers



Alternating spin-1/2 Heisenberg Chain CuNitrate

(D.A. Tennant et al ’09)

asymmetric broadening 
of magnon line

Thermally activated 
scattering

magnon already present in 
state of thermal equilibrium 

changes its spin

J’≈0.23J



Experiments on CuNitrate (D.A. Tennant et al)

Constant Q scans: S(ω,Q,T) for fixed Q and T

“Triplon” Broadening
low-energy T>0 Resonance



Summary

• Many gapped quantum spin chains reduce to integrable QFTs
  at low energies.

• There is an efficient method to calculate T=0 dynamical response
  functions in these QFTs.

• Low-T expansion for finite temperature dynamics.

• Low-T expansion applicable to certain non-integrable spin chains.

• Methods developed for T>0 dynamics allow analysis of
  non-equilibrium problems.
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Quantum systems out of equilibrium

A. Consider a quantum many-particle system with Hamiltonian H

B. Prepare the system in a state |ψ〉that is not an eigenstate.

C. Time evolution |ψ(t)〉= exp(-iHt) |ψ〉

D. Study time evolution of local observables 〈ψ(t)|Ο(x)|ψ(t)〉
    in the thermodynamic limit.

Idea:



Quantum systems out of equilibrium

A. Consider a quantum many-particle system with Hamiltonian H

B. Prepare the system in a state |ψ〉that is not an eigenstate.

C. Time evolution |ψ(t)〉= exp(-iHt) |ψ〉

D. Study time evolution of local observables 〈ψ(t)|Ο(x)|ψ(t)〉
    in the thermodynamic limit.

Idea:

|ψ(t)〉 has a finite density of elementary excitations of the new 

Hamiltonian H → like T>0



Experiments: “Quantum Newton’s Cradle”
T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

40-250 87Rb atoms in a 1D optical trap

Essentially unitary
 time evolution.



👍👍

A different talk !



☺



T>0 Dynamical Structure Factor of CsNiCl3

(M. Kenzelmann et al ’01)
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T=0 delta-function → asymmetric continuum at T>0

(spin-1 Heisenberg chain)



Dynamical Structure Factor

Continuum limit of lattice spin operators:

Dynamical structure factor around q = π:

Dynamical structure factor around q = 0:

Restrictions: formally S>>1, ω<< J (⇔ |qa0|<< π).



Non-Integrable Models

A. Alternating spin-½ Heisenberg Chain:

B. 2-leg spin-½ Heisenberg ladder:

J||=0: uncoupled dimers (for A. along chain)

Low-T expansion works.

“Triplon” S=1 Excitation

�J �J

Ground State



For J||<<J⊥ can still use J||=0 quantum numbers (in PT)
→ combine low-T expansion with PT in J|| 

Low-T DSF for 2-leg ladder: J||=0.1 J⊥, T=0.5 J⊥, Q⊥ =π/2

Asymmetry in ω 
depends on Q

T>0 “Resonance”



Low-T Expansion Method

Can apply it to:

A. Integrable Models (know matrix elements exactly)
⇒ Σ(ω,q,T) in terms of (simple) integrals

B. Models where we know the eigenstates to a good approximation

Input: Energies En and matrix elements 〈r|Sa(0,0)|s〉

Output: Dynamical susceptibility at low T (e-βΔ«1)



Linewidth and “T-dependent gap”

(A. Zheludev et al ’08)

“quasi-universal” behaviour

Halfwidth (τ=T/Δ)“Gap” δ2=(Δ2(T)/Δ2)-1

T=0 Gap Δ« Magnon Bandwidth

2-leg spin-1/2
ladder



Form Factor Bootstrap Approach

 Exact
S-matrix

(Karowski/Weisz ’78, Smirnov ’93, Lukyanov ’95, Delfino/Mussardo ’95, Balog/Niedermaier 
’97, Babujian/Karowski ‘99...)

Matrix elements 
of local operators

O(0,0) |m〉〈n|



Basis States:

Total Momentum:

Total Energy:

|n>=|p1,...,pn>a1...an 

Pn= ∑j=1 pj

En=∑j=1 ε(pj) ≥ nΔ

Idea: Use Lehmann 
representation to 
calculate response 

functions

Can construct exact eigenstates 

labelled by n particle momenta

Matrix elements 
of local operators〈n|O(0,0) |m〉

(Karowski/Weisz ’78, Smirnov ’93, 
Lukyanov ’95, Delfino/Mussardo ’95, 
Babujian/Karowski ‘99...)

Sigma Model is 
integrable

Form Factor Bootstrap Approach

integrability



2-Point Functions in Integrable QFTs

Purely elastic scattering ⇒ Hamiltonian eigenbasis of scattering states

.

p  a
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Basis States:

Total Momentum:

Total Energy:

|n>=|p1,...,pn>a1...an 

Pn= ∑j=1 pj

En=∑j=1 ε(pj) ≥ nΔ

Idea: Use Lehmann 
representation to 
calculate response 

functions

 e.g. O(3) nonlinear sigma model



Field Theory Limit of Integer-S Heisenberg Chain (Haldane ’83
 Affleck ’89)

large integer S, low energies

Constraint: n⋅n=1O(3) nonlinear
sigma model

Dynamical Structure Factor 
around q=π:


