Nuclear magnetic resonance in magnetic systems and metals

Denis Arčon

University of Ljubljana, Faculty of mathematics and physics, Slovenia

Institute "Jozef Stefan", Ljubljana, Slovenia
圈D Durham
University

Motivation

Solid-state physics:

- Crystal structure and lattice dynamics,
- Electronic properties,
- Magnetism, (anti)ferroelectrics, multiferroics
- Superconductors

Experimentalists toys:
Scattering techniques:

- XRD
- Neutron diffraction

Measurements of macroscopic properties:

- Dielectric spectroscopy,
- Magnetization measurements (SQUID, ...)
- Specific heat, thermal conductivity, thermal dilatometry, ...
Vibrational spectroscopies

Local probes that would be simultaneously sensitive to lattice as well to electrons

Faculty of Mathematics and Physics

So, why NMR?

Nuclear magnetic resonance (NMR)

A TOOL to study condensed matter systems

- Local, microscopic, site-specific probe
- Virtually all elements are NMR active
- study electronic spin structure, lattice structure
- Non-invasive - no current, no contacts on the sample
- $\omega_{\text {NMR }} \approx 0(\mu \mathrm{eV})$, gives partial q information (cf. neutron diffraction)
- can be combined with other techniques: transport, magnetization, dielectric, optical, ...
- IJS laboratory: extreme conditions: low temperatures, high pressures, different magnetic fields up to 9.34 T

Elvis is alive and well, working as an NMR spectroscopist in Ljubljana.

Magnetic resonance - basics

History: Purcell (NMR in paraffin), Bloch (NMR in $\mathrm{H}_{2} \mathrm{O}$), Zavoisky (EPR) Magnetic resonance phenomena is found in systems that poses magnetic moments and we are "in tune" with a natural frequency of the magnetic system. Magnetic resonance technique offers a high resolution experimental probe for the study of static and dynamics properties of local magnetic fields.

Nuclear magnetic resonance (NMR): typically in the $10-500 \mathrm{MHz}$ range Electron paramagnetic resonance (EPR): typically in the 1-100 GHz range

NMR is utilized widely not only in physics and/or chemistry but also in medical diagnostics (MRI) and so on.

- Physics

Condensed matter physics

- Chemical

Analysis and/or identification of material

- Biophysics

Analysis of Protein structure

- Medical

MRI (Magnetic Resonance Imaging)

Outline

Lesson	Subject
$\mathbf{1}$	Introduction to magnetic resonance; Bloch equations, relaxation times, dynamics susceptibility
2	The basic spin Hamiltonian for NMR
$\mathbf{3}$	Hyperfine coupling interaction, Knight shift
$\mathbf{4}$	The Moriya theory of spin-lattice relaxation
5	NMR in the superconducting state (just briefly)
6	NMR in the magnetically ordered state
7	Examples: fullerides, pnictides and quasi-1D magnetoelectric system

Magnetic resonance - basics

Nuclear magnetic moments:
A system such as nucleus may consist of many particles coupled together so that for a given state the nucleus possesses a total magnetic moment μ related to a total angular momentum Γ

$$
\vec{\mu}=\gamma \vec{\Gamma} \quad \text { वм: } \hat{\Gamma}=\hbar \hat{I} \Rightarrow \hat{\mu}=\gamma_{N} \hbar \hat{I}
$$

Here γ is a scalar called gyromagnetic ratio and is typical for nuclei or electrons.
Simple model:

$$
\mu=i S=i \pi r^{2} ; \quad \Gamma=m v r=m(2 \pi r / T) r ; i=e / T \rightarrow \gamma=e / 2 m
$$

γ thus decreases with increasing particle mass

	$\gamma[\mathrm{MHz/T}]$	$\mathrm{v}[\mathrm{MHz}]$
proton	2.675×10^{2}	$42.58 \mathrm{~B}_{0}[\mathrm{~T}]$
electron	1.759×10^{5}	$27990 \mathrm{~B}_{0}[\mathrm{~T}]$

ODSEK ZA FIZIKOTRDNE SNOVI

Institut "Jožef Stefan", Ljubljana, Slovenija

Magnetic resonance - basics

Magnetic moment in the external magnetic field

- Torque on the magnetic moment: $\vec{T}=\vec{\mu} \times \vec{B}$
- Change of the angular momentum

$$
\frac{d \vec{\Gamma}}{d t}=\vec{\mu} \times \vec{B} \Rightarrow \frac{d \vec{\mu}}{d t}=\gamma \vec{\mu} \times \vec{B}
$$

Larmor precesion

$$
\omega_{L}=\gamma_{N} B_{0}
$$

Larmor frequency
Typically in the rf range up several houndred MHz

Effect of rf field

- But, in order to see precession, we first need to shift magnetization away from the z-axis. This is the job of rf pulses.
- In the rotating frame, that rotates with Larmor frequency ω_{L}, μ is static $\rightarrow B_{\text {eff }}=B_{0}-\omega_{\mathrm{L}} / \gamma=0$.
- rf field $B_{10} \cos (\Omega t)=B_{R}+B_{L}$
- Rotation around the x_{R} axis

90° pulse

$\tau_{w} \gamma B_{10}=\pi / 2$

B_{10} of the order of 10 mT

Magnetic resonance - basics

Quantum mechanics: we have to treat μ and Γ as operators.

$$
\hat{\vec{\Gamma}}=\hbar \hat{\vec{I}} \Rightarrow \hat{\vec{\mu}}_{n}=\gamma_{n} \hbar \hat{\vec{I}}
$$

In an applied field, $\quad \hat{H}_{Z}=-\hat{\vec{\mu}} \cdot \vec{B}=-\gamma \hbar B_{0} \hat{I}_{Z}$

$$
\mathbf{B}_{a}=B_{0} \hat{\mathbf{z}} \quad \rightarrow \quad E_{m}=-\mu_{Z} \cdot B_{0}=-\gamma \hbar B_{0} m \quad m_{I}=I, I-1, \cdots,-I+1,-I
$$

Example: $I=1 / 2$ (case of ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ for instance)
In the MR we attempt to
 detect the splitting of these energy levels by appropriate perturbation. The interaction must be such, that the angular frequency matches the splitting:
LARMOR FREQUENCY

$$
\hbar \omega_{L}=\Delta E=\not \hbar B_{0}
$$

Which perturbation will trigger the transitions between these levels? R.f. irradiation perpendicular to B_{0} will do the job!

$$
H_{r f}=-\gamma \hbar B_{r f} \hat{I}_{x} \cos \omega_{L} t
$$

Magnetic resonance - basics

Time dependent Schrödinger equation $\quad i \hbar \frac{\partial \psi}{\partial t}=\hat{H}_{Z} \psi$
has the general solution in the form

$$
\psi=\sum_{m} c_{m} u_{I, m} e^{-i E_{m} t / \hbar}
$$

We can now calculate the expectation value for μ_{z}, for instance

$$
\begin{aligned}
\left\langle\mu_{z}\right\rangle & =\int \psi^{*}(t) \hat{\mu}_{z} \psi(t) d \tau \\
& =\gamma \hbar \sum_{m, m^{\prime}} c_{m^{\prime}}^{*} c_{m} e^{-i\left(E_{m}-E_{m^{\prime}}\right) t / \hbar}\left\langle m^{\prime}\right| \hat{I}_{z}|m\rangle \\
& =\gamma \hbar \sum_{m} m c_{m}^{*} c_{m} \\
\xrightarrow[I=1 / 2]{ } & =\frac{1}{2} \gamma \hbar\left(c_{1 / 2}^{*} c_{1 / 2}-c_{-1 / 2}^{*} c_{-1 / 2}\right)=\frac{1}{2} \gamma \hbar\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Normalised WF:

$$
c_{1 / 2}^{*} c_{1 / 2}=a^{2} \quad \& \quad c_{-1 / 2}^{*} c_{-1 / 2}=b^{2}
$$

Magnetic resonance - basics

The calculation for the expectation value for μ_{x}, is slightly more complicated, but follows the same steps

$$
\begin{aligned}
\left\langle\mu_{x}\right\rangle & =\int \psi^{*}(t) \hat{\mu}_{x} \psi(t) d \tau \\
& =\gamma \hbar \sum_{m, m^{\prime}} c_{m^{\prime}}^{*} c_{m} e^{-i\left(E_{m}-E_{m^{\prime}}\right) t / \hbar}\left\langle m^{\prime}\right| \hat{I}_{x}|m\rangle
\end{aligned}
$$

By recalling

$$
\begin{aligned}
& \hat{I}_{+}|I, m\rangle=\sqrt{I(I+1)-m(m+1)}|I, m+1\rangle \\
& \hat{I}_{-}|I, m\rangle=\sqrt{I(I+1)-m(m-1)}|I, m-1\rangle
\end{aligned}
$$

we can derive

$$
\begin{aligned}
& \left\langle\mu_{x}\right\rangle=\gamma \hbar a b \cos \left(\omega_{0} t+\alpha-\beta\right) \\
& \left\langle\mu_{y}\right\rangle=\gamma \hbar a b \sin \left(\omega_{0} t+\alpha-\beta\right) \\
& \left\langle\mu_{z}\right\rangle=\frac{1}{2} \not \hbar\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Magnetic resonance - basics spin-lattice relaxation

Simple rate equations
N

$$
\frac{d N_{+}}{d t}=-W_{+-} N_{+}+W_{-+} N_{-}
$$

$$
\left.P_{a b}=\frac{2 \pi}{\hbar}|\langle b| \hat{V}| a\right\rangle\left.\right|^{2} \delta\left(E_{b}-E_{b}-\hbar \omega\right)
$$

$$
\| b|\hat{V}| a\rangle\rangle^{2}=\mid\langle a| \hat{V}|b\rangle^{2} \Rightarrow W_{+-}=W_{-+} \equiv W
$$

If we introduce $n=N_{+}-N_{-}$and $N=N_{+}+N_{-}$then $N_{+}=1 / 2(N+n)$ and $N_{-}=1 / 2(N-n)$ then we get

$$
\frac{d n}{d t}=-2 W n \Rightarrow n(t)=n_{0} e^{-2 W t}
$$

Initial difference in energy population will exponential decay to zero!

Magnetic resonance - basics spin-lattice relaxation

Problems:

1. Absorbed power $d E / d t=N_{+} W \hbar \omega_{\mathrm{L}}-N_{-} W \hbar \omega_{\mathrm{L}}=W \hbar \omega_{\mathrm{L}} n(\mathrm{t})$ will also vanish after some time (not supported by the experiments).
2. What if $W=0$ (no perturbation) and we change magnetic field (M_{z} should change, what is not predicted by this equation)!

Therefore, there MUST be a process that allows the system to accept (or release) the magnetic energy. It is the coupling to the lattice \rightarrow spin-lattice relaxation

Thermal equilibrium: difference in the population given by the energy difference

$$
\frac{N_{-}^{0}}{N_{+}^{0}}=e^{-\Delta E / k_{B} T}=e^{-\gamma \hbar B_{0} / k_{B} T}
$$

$$
\frac{d N_{+}}{d t}=-W_{\uparrow} N_{+}+W_{\downarrow} N_{-}
$$

In thermal equilibrium $d / d t=0$

$$
W_{\uparrow} / W_{\downarrow}=e^{-\imath \hbar B_{0} / k_{B} T}
$$

Magnetic resonance - basics spin-lattice relaxation

Why now $\mathrm{W}_{\uparrow} \neq \mathrm{W}_{\downarrow}$?

Rate equations are solved by introducing n and N and we get

$$
\begin{aligned}
& \frac{d n}{d t}=N\left(W_{\downarrow}-W_{\uparrow}\right)-n\left(W_{\downarrow}+W_{\uparrow}\right)=\frac{n_{0}-n}{T_{1}} \\
& \frac{1}{T_{1}} \equiv\left(W_{\downarrow}+W_{\uparrow}\right) \quad n_{0}=N \frac{\left(W_{\downarrow}-W_{\uparrow}\right)}{\left(W_{\downarrow}+W_{\uparrow}\right)}
\end{aligned}
$$

In terms of magnetization, this actually reads as

$$
\frac{d M_{z}}{d t}=-\frac{M_{z}-M_{0}}{T_{1}}
$$

Magnetic resonance - basics spin-lattice relaxation

Spin-lattice relaxation also solves the problem of absorption of r.f. energy. Namely, if we take into account external perturbation (described by W) and spin-lattice relaxation together, then we derive

$$
\frac{d n}{d t}=-2 W n+\frac{n_{0}-n}{T_{1}}
$$

In the steady state

$$
n=n_{0} \frac{1}{1+2 W T_{1}}
$$

And the absorbed power will be

$$
\frac{d E}{d t}=n W \hbar \omega=n_{0} W \frac{\hbar \omega}{1+2 W T_{1}}
$$

Magnetic resonance - basics Bloch equations

Classical description of the motion of magnetic moments in external magnetic field Torque due to the action of $\mathrm{B}_{0} \quad \vec{\mu} \times \vec{B}_{0}$

This torque will change the angular momentum

$$
\frac{d \vec{\Gamma}}{d t}=\vec{\mu} \times \vec{B}_{0} \Rightarrow \frac{d \vec{\mu}}{d t}=\gamma \vec{\mu} \times \vec{B}_{0} \Rightarrow \frac{d \vec{M}}{d t}=\gamma \vec{M} \times \vec{B}_{0}
$$

In addition we have also relaxation phenomena to return back to equilibrium. We define two relaxation times T_{1}-spin-lattice relaxation time and $T_{2}-$ spin-spin relaxation time to allow longitudinal and transverse magnetizations to come back

$$
\begin{aligned}
\frac{d M_{x}}{d t} & =\gamma B_{0} M_{y}-\frac{M_{x}}{T_{2}} \\
\frac{d M_{y}}{d t} & =-\gamma B_{0} M_{x}-\frac{M_{y}}{T_{2}} \\
\frac{d M_{z}}{d t} & =-\frac{M_{z}-M_{0}}{T_{1}}
\end{aligned}
$$

Please note that changes in M_{x} and M_{y} do not change the magnetic energy

Magnetic resonance - basics Bloch equations

Bloch equations in compact form
$\frac{d \vec{M}}{d t}=\gamma \vec{M} \times \vec{B}_{0}-\underline{\underline{R}}\left(\vec{M}-\vec{M}_{0}\right) \quad \underline{\underline{R}}=\left(\begin{array}{ccc}1 / T_{2} & 0 & 0 \\ 0 & 1 / T_{2} & 0 \\ 0 & 0 & 1 / T_{1}\end{array}\right)$

With initial conditions $\quad M_{x}(0)=m, M_{y}(0)=0, M_{z}(\infty)=M_{0}$
we have solutions in the form

$$
\begin{aligned}
& M_{x}(t)=m e^{-t / T_{2}} \cos \omega_{0} t \\
& M_{y}(t)=-m e^{-t / T_{2}} \sin \omega_{0} t \\
& M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)
\end{aligned}
$$

Magnetic resonance - basics Bloch equations

The application of $r f$ field perpendicular to the static magnetic field will thus lead to an extra transverse magnetization. In a typical experiment, the rf field will be linearly polarized (along the x-axis)

Rotating frame with field
The result of previous calculations is that, we can write M_{x} component of the magnetization in the laboratory frame as

$$
M_{x}(t)=M_{x}^{r o t} \cos \omega t+M_{y}^{r o t} \sin \omega t=\left(\chi^{\prime} \cos \omega t+\chi^{\prime \prime} \sin \omega t\right) B_{1}
$$

We thus defined a complex r.f. susceptibility

$$
\chi=\chi^{\prime}+i \chi^{\prime}
$$

$$
\boldsymbol{B}_{\mathrm{eff}}=\left(B_{\mathrm{rf}}, 0, B_{0}-\omega / \gamma\right)
$$

with components

$$
\begin{aligned}
& M_{x}=\frac{\left(\omega-\omega_{\mathrm{L}}\right) T_{2}^{2}}{1+\left(\omega-\omega_{\mathrm{L}}\right)^{2} T_{2}^{2}+\gamma^{2} B_{\mathrm{rf}}^{2} T_{1} T_{2}} \gamma B_{\mathrm{rf}} M_{0} \\
& M_{y}=\frac{T_{2}}{1+\left(\omega-\omega_{\mathrm{L}}\right)^{2} T_{2}^{2}+\gamma^{2} B_{\mathrm{rf}}^{2} T_{1} T_{2}} \gamma B_{\mathrm{rf}} M_{0} \\
& M_{z}=\frac{1+\left(\omega-\omega_{\mathrm{L}}\right)^{2} T_{2}^{2}}{1+\left(\omega-\omega_{\mathrm{L}}\right)^{2} T_{2}^{2}+\gamma^{2} B_{\mathrm{rf}}^{2} T_{1} T_{2}} M_{0} .
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{\prime}=\frac{\chi_{0}}{2} \omega_{0} T_{2} \frac{\left(\omega_{0}-\omega\right) T_{2}}{1+\left(\omega_{0}-\omega\right)^{2} T_{2}^{2}} \\
& \chi^{\prime \prime}=\frac{\chi_{0}}{2} \omega_{0} T_{2} \frac{1}{1+\left(\omega_{0}-\omega\right)^{2} T_{2}^{2}}
\end{aligned}
$$

Magnetic resonance - basics Bloch equations

When the detection coil is filled with measured material, its inductance changes by

$$
L=L_{0}(1+\chi)
$$

The complex impedance of the coil thus also changes as

$$
Z=R+i \omega L=R-\omega L_{0} \chi^{\prime \prime}+i \omega L_{0} \chi^{\prime}
$$

The real part of Z changes by $\Delta R / R=\omega L_{0} \chi^{\prime \prime} / R=Q \chi^{\prime \prime}$
In unperturbed coil, the relation between the magnetic energy and the current producing that magnetic field is $1 / 2 \mathrm{~L}_{0} \mathrm{i}_{0}{ }^{2}=1 / 2 \mathrm{~B}_{1}{ }^{2} \mathrm{~V} / \mu_{0}$

Because of change in the impedance, the average dissipated power is

$$
P=\frac{1}{2} \Delta R i_{0}^{2}=\frac{1}{2 \mu_{0}} B_{1}^{2} V \omega \chi^{\prime \prime}
$$

In MR experiments we are thus measuring $\chi^{\prime \prime}$. But χ^{\prime} is related to $\chi^{\prime \prime}$ through KramersKronig relations, so we in principle know both of them.
Also, please note that P is proportional to χ_{0} so it can provide a quantitative information about the static magnetic susceptibility of the samples!

Magnetic resonance - basics Method of moments

The experimentalists thus measure the absorption $\chi^{\prime \prime}(\omega)$. The theorists tend to be more familiar with the Green functions or time-correlation functions of spin operators. In a linear response theory, developed for MR by Kubo and Tomita, $\chi^{\prime \prime}(\omega)$ is expressed as

$$
\chi^{\prime \prime}(\omega)=\frac{\omega V}{2 k_{B} T} \int_{-\infty}^{\infty}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle e^{-i \omega t} d t
$$

A time evolution of M_{x} operator is calculated in the interaction representation

$$
\hat{M}_{x}(t)=e^{i \hat{H} t / \hbar} \hat{M}_{x} e^{-i \hat{H} t / \hbar}
$$

Lets define the spectral lineshape as

$$
f(\omega)=\frac{\chi^{\prime \prime}(\omega)}{\omega}=\frac{V}{2 k_{B} T} \int_{-\infty}^{\infty}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle e^{-i \omega t} d t
$$

If we perform inverse FT of the above expression, we can derive

$$
\frac{V}{2 k_{B} T}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\omega) e^{i \omega t} d \omega
$$

Magnetic resonance - basics Method of moments

If we look at the above expression at time $t=0$, then we notice the following

$$
\frac{V}{2 k_{B} T}\left\langle\hat{M}_{x}(0) \hat{M}_{x}(0)\right\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\omega) d \omega
$$

$$
\begin{aligned}
& \hat{\mu}_{x}=\sum_{i} \hat{\mu}_{i, x} \\
& \left\langle\hat{\mu}_{i, x}^{2}\right\rangle=\left\langle\hat{\mu}_{i, y}^{2}\right\rangle=\left\langle\hat{\mu}_{i, z}^{2}\right\rangle=\frac{1}{3}\left\langle\hat{\mu}_{i}^{2}\right\rangle=\frac{\gamma^{2} \hbar^{2} I(I+1)}{3}
\end{aligned}
$$

Therefore $\left\langle M_{x}^{2}\right\rangle$ is a measure for the area under the resonance curve.
But, if we take the time derivative and then take its value at $\mathrm{t}=0$, we can make even a step further

$$
\left.\frac{V}{2 k_{B} T} \frac{d}{d t}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle\right|_{t=0}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} i \omega f(\omega) d \omega
$$

The n-th time derivative will be thus

$$
\left.\frac{V}{2 k_{B} T} \frac{d^{n}}{d t^{n}}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle\right|_{t=0}=\frac{(i)^{n}}{2 \pi} \int_{-\infty}^{\infty} \omega^{n} f(\omega) d \omega
$$

Magnetic resonance - basics Method of moments

We can thus define n-th moment of the resonance as

$$
\left\langle\omega^{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \omega^{n} f(\omega) d \omega}{\int_{-\infty}^{\infty} f(\omega) d \omega}=(-i)^{n} \frac{\left.\frac{d^{n}}{d t^{n}}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle\right|_{t=0}}{\left\langle\hat{M}_{x}^{2}\right\rangle}
$$

Let us calculate the second moment of the the line

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}\left\langle e^{i \hat{H} t / \hbar} \hat{M}_{x}(0) e^{-i \hat{H} t / \hbar} \hat{M}_{x}(0)\right\rangle=\frac{i}{\hbar} \frac{d}{d t}\left\langle e^{i \hat{H} t / \hbar}\left(H \hat{M}_{x}-\hat{M}_{x} H\right) e^{-i \hat{H} t / \hbar} \hat{M}_{x}(0)\right\rangle \\
& =-\frac{1}{\hbar^{2}}\left\langle e^{i \hat{H} t / \hbar}\left[H,\left[H, \hat{M}_{x}\right] e^{-i \hat{H} t / \hbar} \hat{M}_{x}(0)\right\rangle\right.
\end{aligned}
$$

Taking the above expression at $\mathrm{t}=0$ and slightly rearranging terms, we finally derive

$$
\left\langle\omega^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \omega^{2} f(\omega) d \omega}{\int_{-\infty}^{\infty} f(\omega) d \omega}=-\frac{1}{\hbar^{2}} \frac{\left\langle\left[H, \hat{M}_{x}\right]^{2}\right\rangle}{\left\langle\hat{M}_{x}^{2}\right\rangle}
$$

How do we do it then?

Current Piston-cylinder cell for NMR
 clamp/screw ($\mathrm{Be}-\mathrm{Cu}$)

- for pressures up to 20 kbar
- large sample volumes (< 200 mm3)
- easy to manufacture
upper piston (Ni-Cr-Al)
- inexpensive materials
- dangerous
body (Ni-Cr-Al)

Magnetic resonance - basics pulses

If we can neglect the effect of relaxation times (typically this is justfied when the duration of rf fields is short compared to T_{1} and T_{2}), then one can also show that the effect of rf field will be to rotate the magnetization

$$
t=0
$$

$$
\mathrm{t}=\pi / 2 \gamma \mathrm{H}_{1}(\pi / 2 \text { pulse })
$$

$$
\mathrm{t}=\pi / \gamma \mathrm{H}_{1}(\pi \text { pulse })
$$

After $\pi / 2$ pulse we observe FID

里 Institut "Jožef Stefan", Ljubljana, Slovenija

Magnetic resonance - spin echo

When FID is to short to be observed then we may want to try with spin echo
Two pulse sequence

Spin Echo (Hahn, Phys. Rev. 80, 5801 (1950))

Measurements of relaxation times

Magnetic resonance - what we have learnt so far?

1. Classical Bloch equations (torque $+T_{1}+T_{2}$)
2. T_{1} processes must result in a transfer of energy since it involves magnetic dipoles reorienting in a magnetic field. Quantum mechanically, it is a change of populations between spin-down states to spin-up states which are nondegenerate in a magnetic field. Since the energy is typically gained by the lattice, T_{1} is termed as the lattice or longitudinal spin relaxation time.
3. QM treatment in the Schrödineger and Heisenberg picture
4. In magnetic resonance we are measuring the imaginary part of the r.f. spin susceptiblity $\chi^{\prime \prime}(\omega)$.
5. Method of moments:
6. O-th moment $M_{0}=\int f(\omega) d \omega$ is proportional to the static spin susceptibility
7. Higher moments are in fact given by the commuators [H^{\prime}, I_{x}]. In particular we emphasized the first moment $M_{1}=\int \omega f(\omega) d \omega / M_{0}$, which is just the center of the resonance and the second moment $M_{2}=\int(\omega$ $\left.M_{1}\right)^{2} f(\omega) d \omega / M_{0}$ which is measure for the linewidth.

Magnetic resonance - a brief summary after first lectures

Bloch equations in compact form

$$
\underline{\underline{R}}=\left(\begin{array}{ccc}
1 / T_{2} & 0 & 0 \\
0 & 1 / T_{2} & 0 \\
0 & 0 & 1 / T_{1}
\end{array}\right)
$$

Magnetic resonance measures
Method of moments

$$
\chi^{\prime \prime}(\omega)=\frac{\omega V}{2 k_{B} T} \int_{-\infty}^{\infty}\left\langle\hat{M}_{x}(t) \hat{M}_{x}(0)\right\rangle e^{-i \omega t} d t
$$

$$
\begin{array}{|l}
\left\langle\omega-\omega_{0}\right\rangle=\frac{\int_{-\infty}^{\infty}\left(\omega-\omega_{0}\right) f(\omega) d \omega}{\int_{-\infty}^{\infty} f(\omega) d \omega}=\frac{1}{\hbar} \frac{\left\langle\left[H^{\prime}, \hat{M}_{x}\right] \hat{M}_{x}\right\rangle}{\left\langle\hat{M}_{x}^{2}\right\rangle} \\
\left\langle\left(\omega-\omega_{0}\right)^{2}\right\rangle=\frac{\int_{-\infty}^{\infty}\left(\omega-\omega_{0}\right)^{2} f(\omega) d \omega}{\int_{-\infty}^{\infty} f(\omega) d \omega}=\frac{1}{\hbar} \frac{\left\langle\left[H^{\prime}, \hat{M}_{x}\right]^{2}\right\rangle}{\left\langle\hat{M}_{x}^{2}\right\rangle}
\end{array}
$$

NMR observables

NMR = local, real-space probe where the behaviour of nuclear spins can be monitored on a site-to-site basis.
Types of NMR observables:

1. NMR spectrum is fundamental and major element of sample characterization

- Width \& distribution
> Sample quality
> Crystallographic inequivalent sites
> Local site disorder
- NMR shifts, which are measured as a frequency shift proportional to the applied field is a fundamental measure of the various terms in spin Hamiltonian. In magnetic systems is a measure of local spin susceptibilities. Various sources:
> s-contact shift (in metals = Knight shift)
> Core-polarization shift
> Dipolar shift

$$
\delta=\frac{v_{r e s}}{\gamma B_{0}}-1=\frac{v_{r e s}}{v_{0}}-1
$$

> Chemical shift
2. NMR dynamics as represented by the spin-lattice relaxation time $T_{1} \cdot T_{1}$ is linked to $\chi^{\prime \prime}(\mathbf{q}, \omega)$ via the fluctuation-dissipation theorem.

NMR - basic Hamiltonian

Nuclear magnetic moments in solids constitute nearly perfect example of an ensemble that is weakly coupled to its neighborhood. In NMR we attempt to explore this weak coupling to measure sample's static and dynamic properties.
General spin Hamiltonian

$$
H=H_{Z}+H_{d i p}+H_{Q}+H_{e-n}
$$

1. Zeeman term

$$
H_{Z}=-\gamma \hbar B_{0} \hat{I}_{Z}
$$

NMR: detect the transitions between these levels. It is usually the strongest term and in most experiments it will range between $10-500 \mathrm{MHz}$.

NMR - basic Hamiltonian

2. Dipolar term

$$
H_{d i p}=\frac{\gamma^{2} \hbar^{2}}{2} \sum_{i, j}\left(\frac{\hat{I}_{i} \cdot \hat{I}_{j}}{r_{i j}^{3}}-\frac{3\left(\hat{I}_{i} \cdot \vec{r}_{i j}\right)\left(\hat{I}_{j} \cdot \vec{r}_{i j}\right)}{r_{i j}^{5}}\right)
$$

It is much weaker than Zeeman term as it is at most in the several 10 kHz range. It will give rise to a Gaussian type of broadening of resonances with a second moment

$$
\left\langle\Delta \omega^{2}\right\rangle=\frac{3}{4} \gamma^{4} \hbar^{2} I(I+1) \frac{1}{N} \sum_{i, j}\left(\frac{\left(3 \cos ^{2} \vartheta_{i j}-1\right)^{2}}{r_{i j}^{6}}\right)
$$

Calculated from the definition of the second moment

$$
\left\langle\Delta \omega^{2}\right\rangle=\frac{\int_{-\infty}^{\infty}\left(\omega-\omega_{0}\right)^{2} f(\omega) d \omega}{\int_{-\infty}^{\infty} f(\omega) d \omega}=\frac{1}{\hbar^{2}} \frac{\left\langle\left[H_{d i p}, \hat{M}_{x}\right]^{2}\right\rangle}{\left\langle\hat{M}_{x}^{2}\right\rangle}
$$

NMR - dipolar interaction; example

2. Dipolar term

Effect of molecular motions: we need to Take a time average over the dipolar term

$$
\begin{gathered}
\overline{\left(3 \cos ^{2} \vartheta_{i j}-1\right)} \\
\left\langle\Delta \omega^{2}\right\rangle=\frac{3}{4} \gamma^{4} \hbar^{2} I(I+1) \frac{1}{N} \sum_{i, j}\left(\frac{\left(3 \cos ^{2} \vartheta_{i j}-1\right)^{2}}{r_{i j}}\right)
\end{gathered}
$$

Quadrupole Interaction

${ }^{\oplus}$

NMR - basic Hamiltonian

Some comments about the Quadrupole term:

1. It is frequently the leading (perturbation) term in NMR when $l \neq 1 / 2$. It is not unusual to find it in the several 10 MHz range. In fact in some experiments we deliberately switch off magnetic field and observe only the transitions between the quadrupole split levels (Nuclear Quadrupole Resonance).
2. For $I=1 / 2$ the nuclear quadrupole moment Q vanishes identically according to the Wigner-Eckart theorem.
3. The choice made in the above equation is such that the principal axes fo the EFG tensor are chosen in such a way that $\left|\mathrm{V}_{\mathrm{xx}}\right|<\left|\mathrm{V}_{z z}\right|<\left|\mathrm{V}_{z z}\right|$. That is, $\left|\mathrm{V}_{z z}\right|$ is the largest principal value.
4. The symmetry plays an important role. For instance in cubic symmetries because of $\Delta \mathrm{V}=0$ we see that $\mathrm{V}_{\mathrm{xx}}=\mathrm{V}_{\mathrm{zz}}=\mathrm{V}_{\mathrm{zz}}=0$. In other words, in this case $H_{Q}=0$! However, even in cubic structures, strains can play a role as they effectively give rise to some distribution of v_{Q}. Then due to the first order broadening only the central transition $-1 / 2<->1 / 2$ will be resolved.
5. In tetragonal or trigonal symmetries we find that $\mathrm{V}_{\mathrm{xx}}=\mathrm{V}_{\mathrm{yy}}$ or $\eta=0$! We have an axially symmetric EFG.

Quadrupole interaction

Case of $\eta=0 \quad E_{m}=-\jmath \hbar B_{0} m+\frac{1}{2} h v_{Q}\left(m^{2}-\frac{1}{3} I(I+1)\right) \quad v_{Q}=\frac{3 e^{2} q Q}{2 h I(2 I-1)}$
For $\theta \neq 0: \quad v=v_{L} \pm \frac{1}{2} n v_{Q}\left(3 \cos ^{2} \vartheta-1\right)$
Quadrupole frequency

Quadrupole interaction - powder lineshape

In case of powder samples with uniform distribution of q over the unit sphere, the first order transitions give rise to an intensity distribution between $v_{L}+n v_{Q}$ and $v_{L}-1 / 2 h v_{Q}$ with a square root singularity at $v_{L}-1 / 2 n v_{Q}$

$$
1=3 / 2
$$

$$
v=v_{L} \pm \frac{1}{2} n v_{Q}\left(3 \cos ^{2} \vartheta-1\right)
$$

m is no longer strickly a good quantum number so there are a second order frequency shifts. Interestingly they cancel out for the satelite transition, but they give a second order shift

$$
v_{ \pm \frac{1}{2}}^{(2)}=v_{L}-\frac{v_{Q}^{2}}{16 v_{L}}\left(I(I+1)-\frac{3}{4}\right) \sin ^{2} \vartheta\left(9 \cos ^{2} \vartheta-1\right)
$$

Quadrupole interacation - example

FIG. 1. The fullerene C_{60}.
This is followed by a summary and concluding remarks in Sec. VII.

FIG. 2. Unit cell of $A_{3} \mathrm{C}_{60}$ (Murphy et al., 1992). The small spheres represent alkali ions and the large spheres are the C_{60} molecules. In a given unit cell there are two ions with tetrahedral coordination and one ion with octahedral coordination.
fcc lattice: Octahedral (O) and tetrahedral (T) sites
fcc: site symmetries for the two Cs sites are 23 and $m-3$ => EFG=0
bcc: site symmetry ($-4 m .2$) => $\eta=0$

$$
{ }^{133} \mathrm{Cs} \mathrm{I}=7 / 2
$$

$$
7 / 2 \leftrightarrow 5 / 2,5 / 2 \leftrightarrow 3 / 2, \ldots,-5 / 2 \leftrightarrow-7 / 2)
$$

Electron-nuclear interaction

The coupling between the nuclear and electron moments can be divided into three contributions

$$
H_{e-n}=H_{l}+H_{e-n}^{d i p}+H_{h f}
$$

Chemical shift:

$$
H_{l}=\gamma \hbar g \mu_{B} \vec{I} \cdot \vec{l} / r^{3}
$$

Shift:

$$
\sigma=\frac{v-v_{0}}{v_{0}}
$$

Dimensionless secondrank tensor
... is the interaction to the electron orbital moment and is usually contained in the so-called chemical shift in materials where the angular momentum is quenched. If this is the case, then the extra magnetic field at the nuclear site, which is a result of the orbital moment of the electrons, is expressed as

$$
H_{C S}=-\gamma \hbar \vec{I} \cdot \underline{\underline{\sigma}} \cdot \vec{B}_{0}
$$

$$
\sigma=\left[\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]
$$

Chemical Shift

The range of σ component is somehere in the ppm range, so it s really a small perturbation to the Zeeman hamiltonian. For this reason we will need only $\sigma_{z z}$ component of the tensor.

Chemical shift is widely explored in chemistry for recognising chemical groups and thus for the reconstruction of the chemical components. The calculation of σ is however very tedious job and we shall leave it to quantum chemists. For us it will be a parameter, which is determined directly from the experiments.

FIG. 10. ${ }^{13} \mathrm{C}$ NMR shifts at room temperature for a range of carbon compounds. The shifts are measured in parts per million (ppm) from tetramethylsilane (TMS). Graphite and alkaliintercalated graphite $\mathrm{C}_{8} \mathrm{~K}$ resonate at 176 and 81 ppm , respectively (Mizutani et al., 1981). Solid C_{60} is at 143 ppm , in the range of aromatic compounds, and the superconducting alkalifulleride compound $\mathrm{Rb}_{3} \mathrm{C}_{60}$ is at 182 ppm . The inequivalent carbon sites of C_{70} in a mixed $\mathrm{C}_{60} / \mathrm{C}_{70}$ powder (resolved by magic-angle spinning methods) are at $132,146,148,149$, and 151 ppm (Tycko, Dabbagh, Fleming, et al., 1991), also in the aromatic range. Insulating $\mathrm{K}_{6} \mathrm{C}_{60}$ is at 155 ppm (Tycko, Haddon, et al., 1991). Finally, the ${ }^{13} \mathrm{C}$ resonance of carbon monoxide adsorbed on a platinum surface is at 540 ppm (Shore, 1986), a "world record" shift for ${ }^{13} \mathrm{C}$. Also shown for comparison are ranges of shifts for ${ }^{13} \mathrm{C}$ nuclei in various types of organic compound (Solomons, 1990).

Chemical Shift - powder spectrum

Zeeman + Chemical shift Hamiltonians

$$
H=-\not \hbar \vec{I} \cdot(1+\underline{\underline{\sigma}}) \cdot \vec{B}_{0}
$$

$\sigma_{i j}<1 \quad v=\gamma B_{0}\left(1+\sigma_{z z}\right)=v_{L}\left(1+\sigma_{z z}\right)$

Principal axes
system

$$
\sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{x x} & 0 & 0 \\
0 & \sigma_{y y} & 0 \\
0 & 0 & \sigma_{z z}
\end{array}\right]
$$

$$
x^{\prime}
$$

$$
\underline{\underline{\sigma}}=R_{y}(\theta) \underline{\underline{\sigma}}^{\prime} R_{y}^{-1}(\theta)
$$

Chemical Shift - powder spectrum

The $\sigma_{z 2}$ component, which we are looking for is

$$
\sigma_{z z}=\sigma_{\perp}+\left(\sigma_{\|}-\sigma_{\perp}\right) \cos ^{2} \vartheta
$$

The resonance frequency this reads

$$
\nu=v_{L}\left(1+\sigma_{\perp}+\left(\sigma_{\|}-\sigma_{\perp}\right) \cos ^{2} \vartheta\right)
$$

To calculate the spectrum

$$
\begin{aligned}
& f(v) d v=g(\Omega) d \Omega=\text { const. } d \cos \vartheta \\
& f(v)=\frac{\text { const. }}{\frac{d v}{d \cos \vartheta}=\frac{\text { const. }}{v_{L} 2\left(\sigma_{\|}-\sigma_{\perp}\right) \cos \vartheta}} \\
& f(v)=\frac{\text { const. }}{2 v_{L} \sqrt{\left(\sigma_{\|}-\sigma_{\perp}\right)\left(v-v_{L}\left(1+\sigma_{\perp}\right)\right)}}
\end{aligned}
$$

$$
v \in\left[v_{L}\left(1+\sigma_{\perp}\right), v_{L}\left(1+\sigma_{\|}\right)\right]
$$

Presence of motions: can average the CS anisotropy even in powders

Chemical Shift - powder spectrum

Example: pristine C_{60}
Molecular rotations at high temperatures $T>T_{S}=260 \mathrm{~K}$: rapid isotropic rotational diffusion That means that the angle between the external magnetic field and the principal z^{\prime} axis randomly changes $=>$ need to average over theta $\left\langle\cos ^{2} \theta(t)>=1 / 3\right.$

$$
v=v_{L}\left(1+\sigma_{\perp}+\left(\sigma_{\|}-\sigma_{\perp}\right)<\cos ^{2} \vartheta(t)>\right)
$$

$$
=v_{L}\left(1+\sigma_{\perp}+\left(\sigma_{\|}-\sigma_{\perp}\right) \frac{1}{3}\right)
$$

$$
=v_{L}\left(1+\left(\sigma_{\|}+2 \sigma_{\perp}\right) \frac{1}{3}\right)
$$

$$
=v_{L}\left(1+\frac{1}{3} \operatorname{Tr}\{\underline{\underline{\sigma}}\}\right)
$$

FIG. 5. Simulated inhomogeneous ${ }^{13} \mathrm{C}$ NMR line shape of powdered C_{60} for (a) fast isotropic reorientation, (b) fast uniaxial rotation, and (c) a static powder spectrum. In all three cases, the ${ }^{13} \mathrm{C}$ chemical-shift tensor was assumed to be axially symmetric.

Chemical Shift - powder spectrum

Example: pristine C_{60}

FIG. 20. ${ }^{13} \mathrm{C}$ NMR spectra of solid C_{60} obtained at ambient temperatures of 123,100 , and 77 K (Yannoni, Bernier, et al., 1991). The ${ }^{13} \mathrm{C}$ NMR spectrum of C_{60} is expected to be a broad "powder pattern" resonance (width greater than $\approx 200 \mathrm{ppm}$) reflecting the chemical-shift anisotropy of the ${ }^{13} \mathrm{C}$ nuclei averaged over the crystallite orientations. The "motionally narrowed" NMR line at 295 K (143 ppm from tetramethyl silane) proves that C_{60} molecules are rotating rapidly with respect to the NMR time scale, which is defined by the inverse of the spectral spread $\left(\approx 10^{-4} \mathrm{~s}\right)$. As the temperature is reduced, the powder pattern is recovered as the molecular motion decreases. At 77 K there is little evidence of the narrow line at 143 ppm , and a fit to this line shape yields an asymmetric chemical-shift tensor with components of 220,186 , and 25 ppm.

Electron-nuclear interactions cont.

We mentioned that the angular momentum interaction will give rise to a temperature independent chemical shift. However, in paramagnetic solids we need to take into account also the interaction between the electron and nuclear spins. When they are separated in space, then we can always count on the el-nuclear dipolar interactions

$$
H_{d i p}^{e-n}=\gamma \hbar^{2} g \mu_{B} \sum_{i, j}\left(\frac{3\left(\hat{S}_{i} \cdot \vec{r}_{i j}\right)\left(\hat{I}_{j} \cdot \vec{r}_{i j}\right)}{r_{i j}^{5}}-\frac{\hat{S}_{i} \cdot \hat{I}_{j}}{r_{i j}^{3}}\right)
$$

This will hold well also for p - and d-state electrons. For them we can in fact rewrite the above equation in terms of a coupling traceless tensor T

$$
H_{d i p}^{e-n}=\gamma \hbar^{2} g \mu_{B} \hat{\vec{I}} \cdot \underline{T} \cdot \vec{B}_{0}
$$

For p-electrons the spatial averaging gives the components

$$
T_{\|}=\frac{4}{5}\left\langle\frac{1}{r^{3}}\right\rangle \chi_{S} \quad T_{\perp}=-\frac{2}{5}\left\langle\frac{1}{r^{3}}\right\rangle \chi_{S}
$$

Electron-nuclear interactions cont.

The difficulties arise for the s-state electrons. There the dipolar approximation breaks down since we have a non-zero spin density at the nuclear site. We will treat this case within a simple first-order approximation that is reasonably accurate at high magnetic fields. A more rigorous treatment utilises the Dirac equation (see for instance C.P. Slichter, Principles of Magnetic resonance)
S-orbitals have spherical symmetry and non-zero spin density at the nuclear site. Therefore hf interactions involving s-orbitals are large and isotropic!
The simple model for this interaction is a current loop representing the magnetic moment of the nucleus.

$$
\vec{\mu}_{N}=\operatorname{Sin} \Rightarrow i=\mu_{N} / \pi r^{2}
$$

Biot-Savart law: MF at the center of the loop is

$$
\vec{B}_{N}=\frac{\mu_{0}}{4 \pi} \int i \frac{d \vec{l} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{2 \pi r^{3}} \vec{\mu}_{N}
$$

The average field inside a sphere of radius r is

$$
\begin{aligned}
& B_{a v}=B_{N}(\text { probability density })(\text { volume })= \\
& =B_{N}\left|\psi_{e}(0)\right|^{2} \frac{4}{3} \pi r^{3}=\frac{2}{3} \mu_{0} \mu_{N}\left|\psi_{e}(0)\right|^{2}
\end{aligned}
$$

Electron-nuclear interactions cont.

The energy of the electron magnetic moment in this field will be

$$
\left.E=-\vec{\mu}_{e} \cdot \vec{B}_{a v}=\frac{2}{3} \mu_{0} g \mu_{B}\right\rangle \hbar\left|\psi_{e}(0)\right|^{2} \vec{I} \cdot \vec{S}=a \vec{I} \cdot \vec{S}
$$

Lets take 1s WF

$$
\psi_{e}(\vec{r})=\sqrt{\frac{1}{\pi r_{B}^{3}}} e^{-r / r_{B}} \quad r_{B}=5.29 \cdot 10^{-11} \mathrm{~m}
$$

to get

$$
a_{1 s} / g \mu_{B}=\frac{2}{3} \mu_{0} \not \approx \hbar\left|\psi_{e}(0)\right|^{2}=0.5076 \mathrm{~T}
$$

The more general treatment would actually give the famous Fermi contact interaction More formalistic calucaltion: see J.D. Jackson, Classical Electrodynamics, Ch. 5

$$
\begin{aligned}
& \mathrm{A}=\frac{\mu_{0}}{4 \pi} \mathrm{~m}_{N} \times \frac{\hat{\mathrm{r}}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \mathrm{~m}_{N} \times \frac{\mathrm{r}}{r^{3}} . \\
& \mathrm{B}=\nabla \times \mathrm{A}:
\end{aligned} \quad H_{h f}=\frac{8 \pi}{3} g \mu_{B} \gamma^{2} \vec{I} \cdot \vec{S} \cdot \delta^{3}(\vec{r})
$$

Core-polarization hf coupling

d-electrons: Do we expect Fermi contact hf interaction (zero spin density)?
They will frequently lead to the anisotropic hf interactions, which can be generally written as

$$
H=\sum_{i=x, y, z} a_{i} I_{i} S_{i} \Rightarrow \quad \sum_{i=x, y, z} a_{i} \frac{\chi}{g \mu_{B} \hbar} I_{i} B_{i}
$$

We may thus define the Knight-shift tensor with component

$$
K_{i i}=\frac{a_{i}}{g \mu_{B} \not \hbar^{2}} \chi_{i}
$$

The result may be at first sight surprising since d-WF vanishes at the nuclear site. However, d-electrons can interact indirectly by polarizing core electrons. The Coulomb repulsion drives core sstates (fully occupied) closer to the nucleus. However, because of the Pauli principle "down-spin" s-orbitals will shrink more than "up-spin" s-orbitals. This will create a total negative hf field at the nuclear site. The associated fields can be in fact quite substantial sometimes. For Mn^{2+} in MnF_{2} it can be as large as $-127 \mathrm{kOe} / \mu_{\mathrm{B}}$. 49

Hyperfine interaction

What will Fermi contact inetraction do in magnetic systems?

$$
H_{h f}=\frac{8 \pi}{3} g \mu_{B} \hbar^{2} \vec{I} \cdot \vec{S} \cdot \delta^{3}(\vec{r}) \Rightarrow \omega_{n}=\gamma_{n} B_{l o c}=\gamma_{n}\left(B_{0}+\left\langle B_{h f}\right\rangle\right)
$$

Since we expect that the electron spin dynamics will be fast on the time-scale of NMR experiments (over $10 \mu \mathrm{~s}$) we can take average of e^{-}spin operator || B_{0}

Hyperfine tensor:

- on-site: Fermi contact, $A=$ very strong and ~known
- Transferred: A can be anything
- Dipole: A can be calculated, usually very weak; it vanished in sites having cubic symmetry

$$
A \vec{I} \cdot \vec{S} \rightarrow A I_{Z}\left\langle S_{Z}\right\rangle=A I_{Z} \frac{\mu_{Z}}{g \mu_{B} \hbar}=\gamma_{n} I_{Z} \frac{A \chi_{S}}{\gamma_{n} N_{A} g \mu_{B} \hbar} B_{0} \Rightarrow K=\frac{A}{\gamma_{n} N_{A} g \mu_{B} \hbar} \chi_{S}
$$

Units of A found in the literature:

- $A / \hbar\left[\mathrm{s}^{-1}\right.$]
$-10^{-3} \mathrm{~A} / \gamma_{\mathrm{n}} \hbar[\mathrm{kG} / \mathrm{spin}]$
$-10^{-3} \mathrm{~A} / \gamma_{\mathrm{n}} \mathrm{g} \hbar\left[\mathrm{kG} / \mu_{\mathrm{B}}\right]$
- $A / 1.602 \times 10^{-12}[\mathrm{eV}]$

Hyperfine interaction

How do we extract hyperfine tensor?

Hyperfine interaction

But, be carefull! NMR is still a local real-space probe!

Example, doping of Haldane chain system
F. Tedoldi et al., PRL 1999

Knight shift

In metals:
-The shift is always (almost) positive -The shift is very nearly temperature independent
-The shift in principle increases with the nuclear charge Z.

The fact that metals have a weak spin-paramagnetism suggest that the shift may simply represent the pulling of the magnetic flux into the metal. However, the susceptibilities are to small to account for such effect.
Knight postulated that the shift arises because of the interaction of nuclear spins with the conduction electrons through the s-state hf interaction.

Knight shift

What will Fermi contact inetraction do in metals?

$$
H_{h f}=\frac{8 \pi}{3} g \mu_{B} \gamma \hbar^{2} \vec{I} \cdot \vec{S} \cdot \delta^{3}(\vec{r})
$$

Since we expect that the electron spin dynamics will be fast on the time-scale of NMR experiments we can

$$
\vec{I} \cdot \vec{S} \rightarrow I_{Z}\left\langle S_{Z}\right\rangle=I_{Z} \frac{\mu_{Z}}{g \mu_{B} \hbar}=I_{Z} \frac{\chi_{m o l}}{g \mu_{B} \hbar} B_{0}
$$

In order to calculate the spin density at the nuclear site, we start with the Bloch WF

$$
\psi_{\vec{k}}(\vec{r})=u_{\vec{k}}(\vec{r}) e^{i \vec{k} \cdot \vec{r}} \quad \Rightarrow \quad \rho_{e}=\left|\psi_{\vec{k}}(\vec{r})\right|^{2}
$$

We need to consider only states at the Fermi level Putting everything together we derive

With a Knight shift

$$
H_{h f}=\frac{8 \pi}{3} \gamma \hbar \chi\left|u_{k}(0)\right|_{E_{F}}^{2} I_{Z} B_{0} \equiv \gamma \hbar K I_{Z} B_{0}
$$

$$
K=\frac{8 \pi}{3}\left|u_{k}(0)\right|_{E_{F}}^{2} \chi
$$

Measurement of spin-only susceptibility $\rightarrow N\left(E_{\mathrm{F}}\right)$

Institut "Jožef Stefan", Ljubljana, Slovenija

METALLIC/SC STATE

$T_{\text {MIT }}, T_{\mathrm{sC}}$ dependence pressure/doping

MIT line is not vertical

Superconducting state

Superconducting state

$$
\frac{{ }^{\eta} \delta={ }^{\eta} \delta_{\mathrm{CS}}+\frac{{ }^{\eta} a}{N_{A} \mu_{B}} \chi_{\mathrm{S}}+\frac{\Delta B}{B_{0}}}{Y_{Y(T)}=\int_{-\infty}^{\infty} d E\left(-\frac{\partial f}{\partial E}\right) \operatorname{Re}\left[\frac{E}{\left(E^{2}-\Delta^{2}\right)^{1 / 2}}\right]}
$$

demagnetization due to the
Meissner screening currents and is in general not known

After subtraction of two shifts

$$
{ }^{\eta} \delta-{ }^{\eta} \delta=\Delta_{\mathrm{CS}}+A \chi_{\mathrm{S}}
$$

$$
\Delta_{\mathrm{CS}}={ }^{\eta} \delta_{\mathrm{CS}}-\eta^{\eta^{\prime}} \delta_{\mathrm{CS}}
$$

$$
A=\left({ }^{\eta} a-{ }^{\eta^{\prime}} a\right) / N_{A} \mu_{B}
$$

Summary of interactions

$$
H=H_{Z}+H_{d i p}+H_{Q}+H_{e-n}
$$

$$
H_{Z}=-\gamma \hbar B_{0} \hat{I}_{Z}
$$

$$
H_{d i p}=\frac{\gamma^{2} \hbar^{2}}{2} \sum_{i, j}\left(\frac{\hat{I}_{i} \cdot \hat{I}_{j}}{r_{i j}^{3}}-\frac{3\left(\hat{I}_{i} \cdot r_{i j}\right)\left(\hat{I}_{j} \cdot r_{i j}\right)}{r_{i j}^{5}}\right)
$$

$$
H_{Q}=\frac{e^{2} q Q}{4 I(2 I-1)}\left[3 \hat{I}_{Z}^{2}-I(I+1)+\frac{\eta}{2}\left(I_{+}^{2}+I_{-}^{2}\right)\right]
$$

$$
H_{C S}=-\gamma \hbar \vec{I} \cdot \underline{\underline{\sigma}} \cdot \vec{B}_{0}
$$

$$
H_{d i p}^{e-n}=\hbar^{2} g \mu_{B} \hat{\vec{I}} \cdot \underline{\underline{T}} \cdot \vec{B}_{0}
$$

$$
H_{h f}=\frac{8 \pi}{3} g \mu_{B} \hbar^{2} \vec{I} \cdot \vec{S} \cdot \delta^{3}(\vec{r})
$$

$$
K_{i i}=\frac{a_{i}}{g \mu_{B} \hbar^{2}} \chi_{i}
$$

Example - Pnictides

 compared to an As atom,
$\mathrm{Se}^{2+}:(4 \mathrm{~s})^{2}(4 \mathrm{p})^{6}$
$A s^{3-}:(4 s)^{2}(4 p)^{6}$

Institut "Jožef Stefan", Ljubljana, Slovenija

Phase diagrams

Charge concentration

1. AFI phase next to SC is a hallmark of electron correlations. Correlations are strong and onsite.
2. No symmetry change through MIT!
3. Charge versus pressure controle of SC!

Charge concentration

Chu et al.,
Nat. Phys. 5, 787 (2009)

SC: superconducting
AFI: AFM insulating
Also see our papers
Science 323, 1585 (2009)
Nature 466, 221-225 (2010)
Phys. Rev. B80, 195424 (2009)
4. No disorder caused by the doping (off stoichiometries ...)
5. 3D vs 2D!
6. Importance of cubic symmetry!

Example: NMR in magnetically ordered state SDW in pnictides (1111 phase)

Yildirim, arXiv:0804.2252

(b) AF2 $\left(\mathrm{J}_{1}<2 \mathrm{~J}_{2}\right)$

Fully frustrated
The frustration is lifted by a structural distortion
-SDW order with $Q=(\pi, \pi)$ for $\sqrt{2 a}$ $x \sqrt{ }$ 2a due to the interband nesting between the hole α-and electron β-bands -magnetic moments ~ $0.3 \mu \mathrm{~B}$

Cruz et al., Nature 453, 899 (2008)

Example: NMR in magnetically ordered state SDW in pnictides (1111 phase)

${ }^{75}$ As coupling to Fe moments

$$
\vec{B}_{A s}=\sum_{i=1}^{4} \mathbf{A}_{i} \cdot \vec{\mu}_{i}
$$

Symmetry considerations: mirror reflection with respect to bc plane

$$
\begin{array}{ll}
\mathbf{A}_{1}=\left(\begin{array}{ccc}
a_{x x} & a_{x y} & a_{x z} \\
a_{x y} & a_{y y} & a_{y z} \\
a_{x z} & a_{y z} & a_{z z}
\end{array}\right) ; & \mathbf{A}_{2}=\left(\begin{array}{ccc}
a_{x x} & -a_{x y} & -a_{x z} \\
-a_{x y} & a_{y y} & a_{y z} \\
-a_{x z} & a_{y z} & a_{z z}
\end{array}\right) \\
\mathbf{A}_{3}=\left(\begin{array}{ccc}
a_{x x} & -a_{x y} & a_{x z} \\
-a_{x y} & a_{y y} & -a_{y z} \\
a_{x z} & -a_{y z} & a_{z z}
\end{array}\right) ; & \mathbf{A}_{4}=\left(\begin{array}{ccc}
a_{x x} & a_{x y} & -a_{x z} \\
a_{x y} & a_{y y} & -a_{y z} \\
-a_{x z} & -a_{y z} & a_{z z}
\end{array}\right)
\end{array}
$$

PM phase: $\vec{M}=\chi \vec{H}_{0}$

$$
\delta v=4 a_{x x} \chi B_{0}
$$

AF phase - taken from LaOFeAs data
$\mathbf{Q}=(1,0,1)$
Fe magnetic moments are aligned along the a-axis
ONLY ISOTROPIC PART!!!!
$\mu_{F e}^{\sim} \sim 0.3 \mu_{\mathrm{B}}$
$B_{A s}=4 a_{x z} \mu_{F e} \cdot \hat{e}_{c} \longrightarrow B_{e f f}=B_{0} \sqrt{1+\left(B_{\mathrm{int}} / B_{0}\right)^{2}+\left(B_{\mathrm{int}} / B_{0}\right) \cos \vartheta}$

Example: NMR in magnetically ordered state

NdOFeAs

T phase: As reside on the 2c (1/4, 1/4, z) position, which is axially symmetric.
$\eta=\left(V_{x x}-V_{y y}\right) / V_{z z}=0$
$v_{\mathrm{Q}}=3 \mathrm{eV} V_{z z} Q / 2 l(2 I-1)$
$=11.8 \mathrm{MHz}$
$\mathrm{NdFeAsO} \mathrm{O}_{0.85} \mathrm{~F}_{0.15}$
$v_{\mathrm{Q}}=12.8 \mathrm{MHz}$
Low-T orthorhombic phase: As is on $4 \mathrm{~g}(0,1 / 4, z)$ position, $\eta=0.102$

EFG mainly originates from As $4 p$ Electrons with a prolate p electron distribution in agreement with the negative $V_{z z}$.
comparison
$\left(\mathrm{LaO}_{0.9} \mathrm{~F}_{0.1} \mathrm{FeAs}: v_{\mathrm{Q}}=11 \mathrm{MHz}\right)$

PHYSICAL REVIEW B 79, 0945152009

$$
\begin{gathered}
v_{m \rightarrow m-1}=\gamma_{A s} B_{e f f}+\Delta v_{Q}^{(1)}(\vartheta, \varphi)+\Delta v_{Q}^{(2)}(\vartheta, \varphi) \\
A_{x z}=10.5 \mathrm{kOe} / \mu_{\mathrm{B}}
\end{gathered}
$$

large anisotropic hyperfine fields \rightarrow experimental evidence for the Fe 3d and As $4 p$ hybridizations

'111' family

NaFeAs

They are isostructural


```
LiFeAs
```


M.J. Pitcher et al.,

Chemical Communications 5918-5920(2008).
D.R. Parker et al.,

PRL 104, 057007 (2010).

${ }^{23} \mathrm{Na}(I=3 / 2)$ NMR in NaFeAs

${ }^{23} \mathrm{Na}$ NMR, $\mathrm{Na}_{1} \mathrm{Fe}$ As

Frequency (MHz)
$v_{Q}=530 \mathrm{kHz}$ and the electric field gradient (EFG) asymmetry parameter $\eta=0$, in agreement with the high-temperature Na site symmetry.

No structural phase transition between RT and 60 K

${ }^{23} \mathrm{Na}(I=3 / 2)$ NMR in $\mathrm{Na}_{\mathrm{x}} \mathrm{FeAs}$

They are isostructural! Na vacancies in Na -deficient samples are expected to result in the local disorder and thus broadened NMR lines, which is in contrast to the measured ${ }^{23} \mathrm{Na}$ central transition linewidth in the temperature range $50-300 \mathrm{~K}$ $\rightarrow \mathrm{Na}^{+}$migration??

Lineshape broadening is a clear indication of SDW transition.
Variation of SDW order paramater with x. Still single line so NO phase segregation in this case.

Klanjšek et al., PHYSICAL REVIEW B 84, 054528 (2011)

Institut "Jožef Stefan", Ljubljana, Slovenija

Incommensurate SDW vs. other solutions

Commensurate SDW

Commensurate SDW order with large local amplitude variations in the vicinity of the dopant Curro et al (2010).

INCOMMENSURATE SDW
$B_{\text {int }}=B_{0} \sin \alpha$
with $\alpha \in[0,2 \pi]$ and
$B_{0}=0.45 T$
ordering vector
(1/2- $\epsilon, 0,1 / 2$) for $\epsilon \rightarrow 0$

NdOFeAs; P. Jeglič, PRB 2009

${ }^{75} \mathrm{As}(I=3 / 2)$ NMR in $\mathrm{Na}_{\mathrm{x}} \mathrm{FeAs}$ for $T<T_{\text {sbw }}$: Nature of the order?

LiFeAs - ${ }^{75}$ As NMR

Jeglič et al., PHYSICAL REVIEW B 81, 140511R (2010)
-Axially symetric tensor in agreement with the ${ }^{75} \mathrm{As}$ site symmetry -Weakly temperature dependent v_{Q}

- No annomalies that would indicate SDW transition
-Below Tc ≈ 16 K (9 T) - wipeout effect => onset of SC

Institut "Jožef Stefan", Ljubljana, Slovenija

Spin-lattice relaxation time

Lets recall that

thermal
equilibrium
state
Boltzmann
distribution

Resonance
(absorption)
nonequilibrium state

```
Relaxation
(energy
emission
    to lattice
    (electron system)
    -> thermal
    equilbrium
    state
```

In order to calculate spin-lattice relaxation, we should look at the terms in the spin Hamiltonian that produce transitions between energy levels => we need transverse time-dependent magnetic field

$$
H^{\prime}=-\gamma_{n} \hbar \vec{I} \cdot \delta \vec{B}_{\perp}(t)=-\frac{\gamma_{n} \hbar}{2}\left(I_{+} \delta B_{-}(t)+I_{-} \delta B_{+}(t)\right)
$$

Spin-lattice relaxation time

Fermi golden rule $\left.\quad P_{a b}=\frac{2 \pi}{\hbar}\left|\langle b| H^{\prime}\right| a\right\rangle\left.\right|^{2} \delta\left(E_{a}-E_{b}\right)$

$$
\left.P_{m \rightarrow m+1}=\frac{2 \pi}{\hbar}\left(\frac{\gamma_{n} \hbar}{2}\right)^{2}\left|\langle m+1| I_{+}\right| m\right\rangle\left.\left\langle v^{\prime}\right| \delta B_{-}(t)|v\rangle\right|^{2} \delta\left(E_{v^{\prime}}-E_{v}-\hbar \omega\right)
$$

We next use the definition of Dirac's delta function

$$
\delta\left(E_{v}-E_{v}-\hbar \omega\right)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{i\left(E_{v}-E_{v}-\hbar \hbar_{0}\right)(t / \hbar} d t
$$

And plug it into the above expression

$$
\begin{aligned}
& \left.P_{m \rightarrow m+1}=\frac{\gamma_{n}^{2}}{2}\left|\langle m+1| I_{+}\right| m\right\rangle\left.\right|^{\int_{-\infty}^{\infty}\left\langle v^{\prime}\right| e^{i E_{v} t / \hbar} \delta B_{+}(0) e^{-i E_{v} t / \hbar} \delta B_{-}(0)|v\rangle e^{-i \omega t} d t}= \\
& =\frac{\gamma_{n}^{2}}{2}(I-m)(I+m+1) \int_{-\infty}^{\infty}\left\langle\delta B_{+}(t) \delta B_{-}(0)\right\rangle e^{-i \omega t} d t
\end{aligned}
$$

Spin-lattice relaxation time is then given by

$$
\frac{1}{T_{1}}=\frac{P_{m \rightarrow m+1}+P_{m+1 \rightarrow m}}{(I-m)(I+m+1)}
$$

Spin-lattice relaxation time - some simple considerations

Lets assume that the local magnetic field jumps between two sites with a typical correlation time τ. Therefore, the probability for δB to change is given by $1 / 2 \nu \delta$ t with $v=1 / \tau$.

$$
\frac{1}{T_{1}}=\frac{a^{2}}{2 \hbar^{2}} \int_{-\infty}^{\infty}\left\langle\left[S_{+}(t), S_{-}(0)\right]\right\rangle \cos \omega t d t
$$

FT
$1 / T_{1}$ maximum when $\omega \tau=1$
BPP dependence

$$
S^{2} \int_{-\infty}^{\infty} e^{-t / \tau} \cos (\omega t) d t=S^{2} \sqrt{\frac{2}{\pi}} \frac{\tau}{1+\omega^{2} \tau^{2}}
$$

Spin-lattice relaxation time

Lets now assume, that the fluctuation field comes from the electronic field through the hyperfine coupling intercation

$$
H^{\prime}=\vec{I} \cdot a_{i} \cdot \vec{S}_{i}(t)=-\gamma_{n} \hbar \vec{I} \cdot \delta \vec{B}_{\perp}
$$

Expressing δB we finally get for T_{1}

$$
\frac{1}{T_{1}}=\frac{a^{2}}{2 \hbar^{2}} \int_{-\infty}^{\infty}\left\langle\left[S_{+}(t), S_{-}(0)\right]\right\rangle \cos \omega t d t
$$

After Fourier transformation

$$
[\mathrm{A}, \mathrm{~B}]=(\mathrm{AB}+\mathrm{BA}) / 2
$$

$$
S_{\vec{q}}=\sum_{i} S_{i} e^{-\vec{q} \cdot \vec{r}_{i}} \quad \frac{1}{T_{1}}=\frac{1}{2} \sum_{\vec{q}} A_{\vec{q}} A_{-\vec{q}} \int_{-\infty}^{\infty}\left\langle\left[S_{\vec{q}}^{+}(t), S_{-\bar{q}}^{-}(0)\right]\right\rangle \cos \omega t d t
$$

Finally we fluctuation-dissipation theorem, which states

To get T_{1} in the high-T expansion

$$
\frac{1}{2} \int_{-\infty}^{\infty}\left\langle\left[S_{\bar{q}}^{+}(t), S_{-\bar{q}}^{-}(0)\right]\right\rangle \cos \omega t d t=\frac{2 \hbar \chi^{\prime \prime}{ }_{\perp}(\vec{q}, \omega)}{\left(\gamma_{e} \hbar\right)^{2}\left(1-e^{-\hbar \omega / k T}\right)}
$$

$$
\frac{1}{T_{1}}=\frac{2 \gamma_{n}^{2} k T}{\left(\gamma_{e} \hbar\right)^{2}} \sum_{\vec{q}} A_{\vec{q}} A_{-\vec{q}} \frac{\chi^{\prime \prime}{ }_{\perp}(\vec{q}, \omega)}{\omega}
$$

Spin-lattice relaxation in metals

The perturbing interaction is the s-contact interaction

$$
H_{h f}=\frac{8 \pi}{3} g \mu_{B} \gamma \hbar^{2} \vec{I} \cdot \vec{S} \cdot \delta^{3}(\vec{r})
$$

Transitions from state $\mid k \uparrow m>$ to $\mid k \downarrow m+1>$ where m is the initial nuclear quantum number

$$
\left.P_{k^{\prime} \downarrow m+1 \rightarrow k \uparrow m}=\frac{2 \pi}{\hbar}\left|\left\langle k^{\prime} \uparrow m+1\right| H_{h f}\right| k \downarrow m\right\rangle\left.\right|^{2} \delta\left(E_{k^{\prime}}-E_{k}\right)
$$

We take Bloch WFs and calculate the corresponding matrix elements

$$
\left.\left|\left\langle k^{\prime} \uparrow m+1\right| H_{h f}\right| k \downarrow m\right\rangle\left.\right|^{2}=\left[\frac{4 \pi}{3} \gamma_{n} \gamma_{e} \hbar^{2}\left|u_{k}(0) u_{k^{\prime}}(0)\right|\right]^{2}(I-m)(I+m+1)
$$

We make an approximation that all states in the vicinity of Fermi surface have approximately the same probability density at the nucleus. Next we need to sum over all k and k ' states then we can finaly write

$$
\left.\frac{1}{T_{1}}=\frac{4 \pi}{\hbar}\left[\left.\frac{4 \pi}{3} \gamma_{n} \gamma_{e} \hbar^{2}\langle | u_{k}(0)\right|^{2}\right\rangle\right]^{2} \sum_{k, k^{\prime}} \delta\left(E_{k}-E_{k^{\prime}}\right)
$$

Spin-lattice relaxation in metals

It is important to bear in mind, that the sum over k, k^{\prime} is restricted to states fully occupied at k and empty at k^{\prime}. The sum over k can be replaced by the integration over energy with introducing the density of states $n(E)$, i.e. $\int n(E) d E$. The occupation restriction is eforced with the Fermi occupation function $f(E)=\left[\exp \left(\left(E-E_{F}\right) / k T\right)+1\right]^{-1}$. The summation then becomes

$$
\begin{array}{ll}
\int d E \int d E^{\prime} n(E) n\left(E^{\prime}\right) f(E)\left(1-f\left(E^{\prime}\right)\right) \delta\left(E-E^{\prime}\right) \\
f(E)\left(1-f\left(E^{\prime}\right)\right)=k_{B} T \frac{\partial f}{\partial E}=k_{B} T \delta\left(E-E_{F}\right) \\
\left.\frac{1}{T_{1}}=\frac{4 \pi k_{B} T}{\hbar}\left[\left.\frac{4 \pi}{3} \gamma_{n} \gamma_{e} \hbar^{2}\langle | u_{k}(0)\right|^{2}\right\rangle\right]^{2} n\left(E_{F}\right)^{2} & K=\frac{8 \pi}{3}\left|u_{k}(0)\right|_{E_{F}}^{2} \chi
\end{array}
$$

$$
\frac{1}{T_{1} T K^{2}}=\frac{4 \pi k_{B}}{\hbar \gamma_{e}^{2}}
$$

Famous Korringa relation The final result depends only on elementary constants and not on materials; this hold only for simple metals, where correlations can be neglected

Korringa relation - examples

Korringa relation - corrections

Various corrections can be made to Korringa relation. In principle electron-electron interaction potential can enhance the spin susceptibility thus correcting K.R. in the right way.
However, exchange fluctutations would also enhance spin-lattice relaxation. We will come to this point latter, but for now we just introduce Korringa factor β, which should be $\beta<1$ (AFM) fluctutaions, $\beta>1$ (FM) fluctuations

$$
\frac{1}{T_{1} T K^{2}}=\frac{4 \pi k_{B}}{\hbar \gamma_{e}^{2}} \beta
$$

Stoner enhancement factor

$$
\chi=\frac{\chi_{0}}{1-\alpha_{0}}
$$

RPA (random phase approximation)

$$
\begin{aligned}
& \chi(q, \omega)=\frac{\chi_{0}(q, \omega)}{1-\alpha_{0}\left[\chi_{0}(q, \omega) / \chi_{0}(0,0)\right]} \\
& K \sim \chi \sim \frac{1}{\left(1-\alpha_{0}\right)} \\
& \frac{1}{T_{1} T} \sim\left\{N\left(\varepsilon_{F}\right)\left(1-\alpha_{q}\right)\right\}^{2}
\end{aligned}
$$

Spin-lattice relaxation time - some simple considerations

To a reasonable appoximation we may try to write

$$
\chi^{\prime \prime}{ }_{\perp}(\vec{q}, \omega)=\chi(\vec{q}, 0) \frac{\omega_{e} \omega_{n}}{\omega_{e}^{2}+\omega_{n}^{2}} \approx \chi(\vec{q}, 0) \frac{\omega_{n}}{\omega_{e}}
$$

Then

$$
\frac{1}{T_{1}}=\frac{2 \gamma_{n}^{2} k T}{\left(\gamma_{e} \hbar\right)^{2}} \sum_{\vec{q}} A_{\bar{q}} A_{-\bar{q}} \frac{\chi(\vec{q}, 0)}{\omega_{e}}
$$

Where $\omega_{e x}=\left[2 z k_{B}^{2} J^{2} S(S+1) / 3 \hbar^{2}\right]^{1 / 2}$

Example: $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-y}$

Moriya expression
$\frac{1}{T_{1} T} \propto \sum_{\mathbf{q}}|A(\mathbf{q})|^{2} \frac{\chi^{\prime \prime}\left(\mathbf{q}, \omega_{n}\right)}{\omega_{n}}$
$A(\mathbf{q})=\sum_{j} C_{j} \exp \left(i \mathbf{q} \cdot \mathbf{r}_{j}\right)$

Millis, Monien and Pines assumed that the spin dynamics is described by
$\lim _{\omega \rightarrow 0} \chi^{\prime \prime}(\mathbf{q}, \omega)=\frac{\pi \chi_{0} \hbar \omega}{\Gamma}\left[1+\beta \frac{\xi^{4}}{\left[1+\left(\mathbf{q}-\mathbf{q}_{A F M}\right)^{2} \xi^{2}\right]^{2}}\right]$

$$
\begin{aligned}
{ }^{63} K & =(A+4 B) \chi_{s} \\
{ }^{17} K & =2 C \chi_{s}
\end{aligned}
$$

$$
\left|{ }^{63} A(\mathbf{q})\right|^{2}=\left(A+2 B\left[\cos q_{x} a+\cos q_{y} a\right]\right)^{2}
$$

$$
\left|{ }^{17} A(\mathbf{q})\right|^{2}=4 C^{2} \cos ^{2} \frac{q_{x} a}{2}
$$

CuO_{2} layer with Cu^{2+} localized moments

A: on-site coupling B, C : transferred couplings

Mila \& Rice,
Physica C 157, 561 (1990)

$$
\begin{aligned}
& \mathbf{q}_{A F M}=\left(\frac{\pi}{a}, \frac{\pi}{a}\right) \\
\Rightarrow \quad & \left|{ }^{63} A\left(\mathbf{q}_{A F M}\right)\right|^{2}=(A-4 B)^{2} \\
& \left|{ }^{17} A\left(\mathbf{q}_{A F M}\right)\right|^{2}=0 \quad \begin{array}{l}
\text { Millis, Monien \& Pines } \\
\text { PRB 42, 167 (1990) }
\end{array}
\end{aligned}
$$

Spin-lattice relaxation time - critical fluctuations

Enhancement of $1 / T_{1}$ close to T_{N}

AF correlations

Example: LiFeAs

Localized Fe^{2+} spins

$$
\begin{aligned}
& { }^{75} K=4 C \chi_{s} \\
& \left|{ }^{75} A(\mathbf{q})\right|^{2}=16 C^{2} \cos ^{2} \frac{q_{x} a}{2} \cos ^{2} \frac{q_{y} a}{2}
\end{aligned}
$$

Itinerant Fe 3d electrons

$$
\begin{aligned}
& { }^{75} K=c \chi_{s} \\
& \left|{ }^{75} A(\mathbf{q})\right|^{2}=c^{2}
\end{aligned}
$$

Supported by density-functional calculations:

- Katrin Koch \& Helge Rosner, MPI-CPfS
- Calculated electric-field gradients correctly reproduce the experimental values for both ${ }^{75} \mathrm{As}$ and ${ }^{7}$ Li sites.

$$
\frac{1}{T_{1} T} \propto \sum_{\mathbf{q}}|A(\mathbf{q})|^{2} \frac{\chi^{\prime \prime}\left(\mathbf{q}, \omega_{n}\right)}{\omega_{n}}
$$

For noninteracting spins $\quad \chi^{\prime \prime}\left(\mathbf{q}, \omega_{n}\right)$ can be taken out of the summation. In this limit we can calculate β_{0} and β_{0}^{\prime} for the localized spins and itinerant scenario. If

$$
c=4 C \Rightarrow
$$

$$
\begin{aligned}
\frac{\beta_{0}^{\prime}}{\beta_{0}} & =\frac{\sum_{\mathbf{q}} c^{2}}{\sum_{\mathbf{q}}|A(\mathbf{q})|^{2}}= \\
& =\frac{16 \mathrm{C}^{2} \iint \mathrm{~d} q_{x} \mathrm{~d} q_{y}}{16 \mathrm{C}^{2} \iint \mathrm{~d} q_{x} \mathrm{~d} q_{y} \cos ^{2} \frac{q_{x} a}{2} \cos ^{2} \frac{q_{y} a}{2}}=4
\end{aligned}
$$

Example: AFM fluctuations in LiFeAs

Korringa factor β, measured for LiFeAs (green circles) and $\mathrm{SrFe}_{2} \mathrm{As}_{2}$ (red circles). Horizontal dashed lines indicate expected β values for noninteracting electrons.

If the transferred coupling is active, $1 / T_{1} T$ is enhanced for a factor of 15 ± 5 !

Jeglič et al.,
ArXiv: 0912.0692

How strong are AFM fluctuations in LiFeAs?

1. We cannot unambiguously discriminate between the on-site Fermi contact (itinerant) and the transferred coupling mechanism (localized moment at the Fe sites).
2. Cross-terms between different bands in the LiFeAs multiband structure can modify Korringa relation.

NMR = local, real-space probe where the behaviour of nuclear spins can be monitored on a site-to-site basis.

Observables:

- NMR spectrum
- Relaxation rates

Hyperfine interaction (Fermi contact, transferred hf, dipolar interaction)
Knight shift, shift in the superconducting state
Spin-lattice relaxation rate, Korringa relation

$$
\frac{1}{T_{1}}=\frac{2 \gamma_{n}^{2} k T}{\left(\gamma_{e} \hbar\right)^{2}} \sum_{\vec{q}} A_{\vec{q}} A_{-\bar{q}} \frac{\chi^{\prime \prime}{ }_{\perp}(\vec{q}, \omega)}{\omega}
$$

Acknowledgements

Ljubljana:

Peter Jeglič, Martin Klanjšek, Andrej Zorko, Anton Potočnik, Kristjan Anderle and Andraž Kranjc

www.lemsuper.eu

