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Motivation 
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Solid-state physics: 
- Crystal structure and lattice dynamics, 
- Electronic properties, 
- Magnetism, (anti)ferroelectrics, multiferroics 
- Superconductors 

Local probes that would 
be simultaneously 
sensitive to lattice as well 
to electrons 

Experimentalists toys: 
Scattering techniques: 
- XRD 
- Neutron diffraction 
Measurements of macroscopic 
properties: 
- Dielectric spectroscopy, 
- Magnetization measurements 

(SQUID, … ) 
- Specific heat, thermal 

conductivity, thermal 
dilatometry, … 

Vibrational spectroscopies 
 



So, why NMR? 
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Nuclear magnetic resonance (NMR)  
 
A TOOL to study condensed matter systems 
 
o Local, microscopic, site‐specific probe 
o Virtually all elements are NMR active 
o study electronic spin structure, lattice 

structure 
 

o Non‐invasive – no current, no contacts on 
the sample 

o ωNMR ≈ 0 (μeV), gives partial q information 
(cf. neutron diffraction) 

o can be combined with other techniques: 
transport, magnetization, dielectric, optical, 
… 

o IJS laboratory: extreme conditions: low 
temperatures, high pressures, different 
magnetic fields up to 9.34 T 

Elvis is alive and well, working 
as an NMR spectroscopist in 
Ljubljana. 



Magnetic resonance - basics 
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History: Purcell (NMR in paraffin), Bloch (NMR in H2O), Zavoisky (EPR) 
Magnetic resonance phenomena is found in systems  that poses magnetic moments 
and we are “in tune” with a natural frequency of the magnetic system. Magnetic 
resonance technique offers a high resolution experimental probe for the study of 
static and dynamics properties of local magnetic fields.  
  
Nuclear magnetic resonance (NMR): typically in the 10-500 MHz range 
Electron paramagnetic resonance (EPR): typically in the 1-100 GHz range 
 
NMR is utilized widely not only in physics and/or chemistry but also  in medical 
diagnostics (MRI) and so on. 
・Physics 
 Condensed matter physics 
・Chemical 
 Analysis and/or identification of material 
・Biophysics 
 Analysis of Protein structure 
・Medical 
 MRI (Magnetic Resonance Imaging) 

„It‘s lupus, 
do the MRI!“ 



Outline 
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Lesson Subject 

1 Introduction to magnetic resonance; Bloch equations, 
relaxation times, dynamics susceptibility  

2 The basic spin Hamiltonian for NMR 

3 Hyperfine coupling interaction, Knight shift 

4 The Moriya theory of spin-lattice relaxation 

5 NMR in the superconducting state (just briefly) 

6 NMR in the magnetically ordered state 

7 Examples: fullerides, pnictides and quasi-1D magnetoelectric 
system 



Magnetic resonance - basics 
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Nuclear magnetic moments:  
A system such as nucleus may consist of many particles coupled together so that for a 
given state the nucleus possesses a total magnetic moment m related to a total 
angular momentum G 
 
 
Here g is a scalar called gyromagnetic ratio and is typical for nuclei or electrons. 
 
Simple model:  
  m = iS = ipr2 ;  G=mvr=m(2pr/T)r  ;  i=e/T  g = e/2m 
 
g thus decreases with increasing particle mass  
  
 
 
 
 

Γ


gm =

γ   [MHz/T ] ν   [MHz] 

proton 2.675102 42.58 B0 [T] 

electron 1.759105 27990 B0 [T] 

QM: II N
ˆˆˆˆ  gm ==G
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Nucleus 
γ/2π         

(MHz/T) 

1H 42.576 

2H 6.53566 

3He -32.434 

7Li 16.546 

13C 10.705 

14N 3.0766 

15N -4.3156 

17O -5.7716 

23Na 11.262 

63Cu 11.284 

65Cu 12.109 

51V 11.193 

31P 17.235 

129Xe -11.777 



Magnetic moment in the external 
magnetic field 

• Torque on the magnetic moment:  

• Change of the angular momentum 
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BT


= m

B
dt

d
B

dt

Γd 




== mg
m

m

Larmor precesion 
m


0BNL g =

Larmor frequency 
Typically in the rf range up 
several houndred MHz 



Effect of rf field 
• But, in order to see precession, we first need to shift 

magnetization away from the z-axis. This is the job of rf 
pulses. 

• In the rotating frame, that rotates with Larmor 
frequency L, m is static  Beff=B0- L/g=0. 

• rf field B10cos(Wt) = BR+BL 

• Rotation around the xR axis 

9 

0=R

effB

m


xR 
rfB


90o pulse 
tWgB10=p/2 

yR 

B10 of the order of 10 mT  
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Quantum mechanics: we have to treat m  and G as operators. 
 
 
 
 

IIΓ nn

ˆˆˆˆ 






gm ==

In an applied field, 
 
 
 
Example: I = ½ (case of 1H or 13C for instance) 

0
ˆ

a B=B z → , 1, , 1,Im I I I I=    

ZZ IBBH ˆˆˆ
0


gm ==

mBBE Zm 00 gm ==

In the MR we attempt to 
detect the splitting of these 
energy levels by appropriate 
perturbation. The interaction 
must be such, that the angular 
frequency matches the 
splitting: 
LARMOR FREQUENCY 

0BEL  g ==

Which perturbation will trigger the transitions between these levels? R.f. irradiation 
perpendicular to B0 will do the job! 

tIBH Lxrfrf g cosˆ=
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Time dependent Schrödinger equation 
 
has the general solution in the form 
 
 
 
We can now calculate the expectation  value for mz, for instance 
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The calculation for the expectation  value for mx, is slightly more complicated, but 
follows the same steps 
 
 
 
 
 
By recalling 
 
 
 
 
we can derive 
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N- 

 
 
N+ 


 = NWNW

dt

dN

Simple rate equations 

Fermi golden rule:  
p




= bbab EEaVbP
2

ˆ2

WWWbVaaVb == 

22

ˆˆ

If we introduce n=N+ -N- and N=N+ +N- then N+=½(N+n) and N-=½(N-n) then we get  

WtentnWn
dt

dn 2

0)(2 ==
Initial difference in energy 
population will exponential 
decay to zero! 
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Problems: 
1. Absorbed power dE/dt=N+WħωL-N-WħωL=WħωLn(t) will also vanish after some time 

(not supported by the experiments). 
2. What if W = 0 (no perturbation) and we change magnetic field (MZ should change, 

what is not predicted by this equation)! 
 
Therefore, there MUST be a process that allows the system to accept (or release) the 

magnetic energy. It is the coupling to the lattice  spin-lattice relaxation 
 
Thermal equilibrium: difference in the population given by the energy difference 

TkBTkE BB ee
N

N
0

0

0
g



 ==


 = NWNW
dt

dN

In thermal equilibrium d/dt=0 TkB BeWW 0/
g


=
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Why now WW? 
 
 
 
 
Rate equations are solved by introducing n and N and we get 
 
 
 
 
 
 
 
 
 
In terms of magnetization, this actually reads as 
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Spin-lattice relaxation also solves the problem of absorption of r.f. energy. Namely, if 
we take into account external perturbation (described by W) and spin-lattice 
relaxation together, then we derive  
 
 
 
 
 
 
In the steady state  
 
 
 
And the absorbed power will be 
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Classical description of the motion of magnetic moments in external magnetic field 
 
Torque due to the action of B0  

 
This torque will change the angular momentum  
 
 
 
 
In addition we have also relaxation phenomena to return back to equilibrium. We define 
two relaxation times T1 – spin-lattice relaxation time and T2 – spin-spin relaxation time to 
allow longitudinal and transverse magnetizations to come back 
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Bloch equations in compact form 
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The application of rf field perpendicular to the static magnetic field will thus lead to an 
extra transverse magnetization. In a typical experiment, the rf field will be linearly 
polarized (along the x-axis) 

xlab 
xrot 

yrot 
ylab 

t 

The result of previous calculations is that, we can 
write Mx component of the magnetization in the 
laboratory frame as 
 
 
We thus defined a complex r.f. susceptibility 
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When the detection coil is filled with measured material, its inductance changes by 

 L=L0(1+) 
 
The complex impedance of the coil thus also changes as 
 Z=R+iL=R-L0’’+iL0’ 
 
The real part of Z changes by R/R=L0’’/R=Q’’ 
 
In unperturbed coil, the relation between the magnetic energy and the current 
producing that magnetic field is   ½L0i0

2= ½B1
2V/m0 

 
Because of change in the impedance, the average dissipated power is  
 
 
 
In MR experiments we are thus measuring ’’. But ’ is related to ’’ through Kramers-
Kronig relations, so we in principle know both of them. 
Also, please note that P is proportional to 0 so it can provide a quantitative information 
about the static magnetic susceptibility of the samples!  
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The experimentalists thus measure the absorption ’’(). The theorists tend to be more 
familiar with the Green functions or time-correlation functions of spin operators. In a 
linear response theory, developed for MR by Kubo and Tomita, ’’() is expressed as 
 
 
 
 
A time evolution of Mx operator is calculated in the interaction representation  
 
 
 
Lets define the spectral lineshape as 
 
 
 
If we perform inverse FT of the above expression, we can derive 
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If we look at the above expression at time t=0, then we notice the following 
 
 
 
 
Therefore <Mx

2> is a measure for the area under the resonance curve.  
But, if we take the time derivative and then take its value at t=0, we can make even a 
step further 
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We can thus define n-th moment of the resonance as  
 
 
 
 
 
 
Let us calculate the second moment of the the line 
 
 
 
 
 
 
Taking the above expression at t=0 and slightly rearranging terms, we finally derive 
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Current Piston-cylinder cell for 
NMR 

• for pressures up to 20 kbar 

• large sample volumes (< 200 mm3) 

• easy to manufacture 

 

• inexpensive materials 

• dangerous 

clamp/screw (Be-Cu) 

bottom piston (Be-Cu) 
 

body (Ni-Cr-Al) 

upper piston (Ni-Cr-Al) 
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If we can neglect the effect of relaxation times (typically this is justfied when the 
duration of rf fields is short compared to T1 and T2), then one can also show that the 
effect of rf field will be to rotate the magnetization 
 
 
 
 
 
 
 

After p/2 pulse we observe FID 

Small current induced 
in the coil is amplified 
and then analyzed 



Magnetic resonance – spin echo 
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When FID is to short to be observed then we may want to try with spin echo 
 
 
 
 
 
 
 



Measurements of relaxation times 

28 



Magnetic resonance – what we have 
learnt so far? 
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1. Classical Bloch equations (torque + T1 + T2) 
2. T1 processes must result in a transfer of energy since it involves magnetic 

dipoles reorienting in a magnetic field. Quantum mechanically, it is a change 
of populations between spin-down states to spin-up states which are 
nondegenerate in a magnetic field. Since the energy is typically gained by 
the lattice, T1 is termed as the lattice or longitudinal spin relaxation time. 

3. QM treatment in the Schrödineger and Heisenberg picture 
4. In magnetic resonance we are measuring the imaginary part of the r.f. spin 

susceptiblity ”(). 
5. Method of moments: 

1. O-th moment M0=f()d is proportional to the static spin susceptibility 
2. Higher moments are in fact given by the commuators [H’, Ix]. In 

particular we emphasized the first moment M1=  f()d / M0, which 
is just the center of the resonance and the second moment M2= (-
M1)2 f()d / M0 which is measure for the linewidth. 

 
 
 
 
 
 
 



Magnetic resonance – a brief 
summary after first lectures 

30 

 
 
 
Bloch equations in compact form 
 
 
 
 
 
Magnetic resonance measures 
 
Method of moments 
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NMR observables 
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NMR = local, real-space probe where the behaviour of nuclear spins can be 
monitored on a site-to-site basis. 
Types of NMR observables: 
1. NMR spectrum is fundamental and major element of sample 

characterization 
• Width & distribution  

 Sample quality 
 Crystallographic inequivalent sites 
 Local site disorder 

• NMR shifts, which are measured as a frequency shift proportional to 
the applied field is a fundamental measure of the various terms in spin 
Hamiltonian. In magnetic systems is a measure of local spin 
susceptibilities. Various sources: 
 s-contact shift (in metals = Knight shift) 
 Core-polarization shift 
 Dipolar shift 
 Chemical shift 

2. NMR dynamics as represented by the spin-lattice relaxation time T1. T1 is 
linked to “(q,) via the fluctuation-dissipation theorem.   
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NMR – basic Hamiltonian 
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Nuclear magnetic moments in solids constitute nearly perfect example of an ensemble 
that is weakly coupled to its neighborhood. In NMR we attempt to explore this weak 
coupling to measure sample’s static and dynamic properties.  
General spin Hamiltonian 
 
 
 
 
1. Zeeman term 

 
 
 

NMR: detect the transitions between these levels. It is usually the strongest term and in 
most experiments it will range between 10-500 MHz. 
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2. Dipolar term 
 
 
 
 
 
 
It is much weaker than Zeeman term as it is at most in the several 10 kHz range. It will 

give rise to a Gaussian type of broadening of resonances with a second moment 
 
 
 
 
 
Calculated from the definition of the second moment 
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2. Dipolar term 
Effect of molecular motions: we need to  
Take a time average over the dipolar term 
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Nuclei of spin I  1 have electric quadrupole moment.  
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Some comments about the Quadrupole term: 
1. It is frequently the leading (perturbation) term in NMR when I1/2. It is not 

unusual to find it in the several 10 MHz range. In fact in some experiments we 
deliberately switch off magnetic field and observe only the transitions between the 
quadrupole split levels (Nuclear Quadrupole Resonance). 

2. For I=1/2 the nuclear quadrupole moment Q vanishes identically according to the 
Wigner-Eckart theorem. 

3. The choice made in the above equation is such that the principal axes fo the EFG 
tensor are chosen in such a way that |Vxx|<|Vzz|<|Vzz|. That is, |Vzz| is the largest 
principal value. 

4. The symmetry plays an important role. For instance in cubic symmetries because of 
V=0 we see that Vxx=Vzz=Vzz=0. In other words, in this case HQ=0! However, even in 
cubic structures, strains can play a role as they effectively give rise to some 
distribution of Q. Then due to the first order broadening only the central transition 
-1/2<->1/2 will be resolved. 

5. In tetragonal or trigonal symmetries we find that Vxx=Vyy or =0! We have an axially 
symmetric EFG.  
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Case of =0 
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In case of powder samples with uniform distribution of q over the unit sphere, the first 
order transitions give rise to an intensity distribution  between L+nQ and L-½nQ 
with a square root singularity at L-½nQ  
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2
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m is no longer strickly a good 
quantum number so there are a 
second order frequency shifts. 
Interestingly they cancel out for the 
satelite transition, but they give a 
second order shift  
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bcc lattice: only a 
single intercalation site 

fcc lattice: Octahedral (O) 
and tetrahedral (T) sites 

133Cs I=7/2 
7/25/2, 5/23/2, …, -5/2-7/2)  

fcc: site symmetries for the two 
Cs sites are 23 and m-3 => 
EFG=0 

bcc: site symmetry (-4m.2) => =0 
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The coupling between the nuclear and electron moments can be divided into three 
contributions 
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and is usually contained in the so-called chemical shift 
in materials where the angular momentum is 
quenched. If this is the case, then the extra magnetic 
field at the nuclear site, which is a result of the orbital 
moment of the electrons, is expressed as   
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The range of  component is somehere in the 
ppm range, so it s really a small 
perturbation to the Zeeman hamiltonian. 
For this reason we will need only zz 
component of the tensor.  

 
Chemical shift is widely explored in chemistry 

for recognising chemical groups and thus for 
the reconstruction of the chemical 
components. The calculation of  is 
however very tedious job and we shall leave 
it to quantum chemists. For us it will be a 
parameter, which is determined directly 
from the experiments.  
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Zeeman + Chemical shift Hamiltonians 
 
 
 
ij<<1 
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The zz component, which we are looking for is 
 
 
 
The resonance frequency this reads 
 
 
 
 
To calculate the spectrum 
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Example: pristine C60 
 
Molecular rotations at high temperatures 
T>TS=260 K: rapid isotropic rotational diffusion 
That means that the angle between the 

external magnetic field and the principal z’ 
axis randomly changes => need to average 
over theta <cos2qt>=1/3 
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Example: pristine C60 
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We mentioned that the angular momentum interaction will give rise to a temperature 
independent chemical shift. However, in paramagnetic solids we need to take into 
account also the interaction between the electron and nuclear spins. When they are 
separated in space, then we can always count on the el-nuclear dipolar interactions  

 
 
 
 
 
 
This will hold well also for p- and d-state electrons. For them we can in fact rewrite the 

above equation in terms of a coupling traceless tensor T 
 
 
 
For p-electrons the spatial averaging gives the components 
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The difficulties arise for the s-state electrons. There the dipolar approximation breaks 
down since we have a non-zero spin density at the nuclear site. We will treat this case 
within a simple first-order approximation that is reasonably accurate at high magnetic 
fields. A more rigorous treatment utilises the Dirac equation (see for instance C.P. 
Slichter, Principles of Magnetic resonance) 

S-orbitals have spherical symmetry and non-zero spin density at the nuclear site. 
Therefore hf interactions involving s-orbitals are large and isotropic! 

The simple model for this interaction is a current loop representing the magnetic 
moment of the nucleus. 

 
 
 
Biot-Savart law: MF at the center of the loop is 
 
 
 
The average field inside a sphere of radius r is 
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The energy of the electron magnetic moment in this field will be 
 
 
 
 
Lets take 1s WF 
 
 
 
 
 
to get 
 
 
The more general treatment would actually give the famous Fermi contact interaction  
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d-electrons: Do we expect Fermi contact hf interaction (zero spin density)? 
 
They will frequently lead to the anisotropic hf interactions, which can be generally 
written as 
 
 
 
We may thus define the Knight-shift tensor with component 
 
 
 
 

The result may be at first sight surprising since d-WF vanishes at 
the nuclear site. However, d-electrons can interact indirectly by 
polarizing core electrons. The Coulomb repulsion drives core s-
states (fully occupied) closer to the nucleus. However, because of 
the Pauli principle “down-spin” s-orbitals will shrink more than 
“up-spin” s-orbitals. This will create a total negative hf field at the 
nuclear site. The associated fields can be in fact quite substantial 
sometimes. For Mn2+ in MnF2 it can be as large as -127 kOe/mB. 
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What will Fermi contact inetraction do in magnetic systems? 
 
 
 
 
Since we expect that  the electron spin dynamics will be fast on the time-scale of NMR 

experiments (over 10 ms) we can take average of e- spin operator ||B0 

 
 
 
 
 

 rSIgH Bhf


 32

3

8
gm

p
=

0B
gN

A
I

g
AISAISIA

BAn

S
Zn

B

Z
ZZZ





mg


g

m

m
==

 hfnlocnn BBB == 0gg

 =
i

iihf SAB Hyperfine tensor: 
- on-site: Fermi contact, A= very strong and 

known 
- Transferred: A can be anything 
- Dipole: A can be calculated, usually very weak; it 

vanished in sites having cubic symmetry 

S

BAn gN

A
K 

mg 
=

Units of A found in the literature:  
- A/  [s-1] - 10-3 A/gn  [kG/spin]  - 10-3 A/gng  [kG/mB]   
- A/1.60210-12  [eV] 



Hyperfine interaction 

51 

How do we extract hyperfine tensor? 
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But, be carefull! NMR is still a local real-space probe! 
Example, doping of Haldane chain system  
 
 
 
 
 
 
 
 
 

89Y NMR 
Y2BaNi0.95Mg0.05O5 

         Tii
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1

1
e1 

=

valence bond solid 
with a single valence 
bond connecting 
every neighboring 
pair of sites 

the ends of the 
chain behave like 
spin S=1/2 
moments even 
though the system 
consists of S= 1 
only 

F. Tedoldi et al., PRL 1999 
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C60 versus K3C60 

In metals: 
-The shift is always (almost) positive 
-The shift is very nearly temperature 
independent 
-The shift in principle increases with 
the nuclear charge Z. 
 

The fact that metals have a weak 
spin-paramagnetism suggest that the 
shift may simply represent the 
pulling of the magnetic flux into the 
metal. However, the susceptibilities 
are to small to account for such 
effect.  
Knight postulated that the shift 
arises because of the interaction of 
nuclear spins with the conduction 
electrons through the s-state hf 
interaction. 
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What will Fermi contact inetraction do in metals? 
 
 
 
 
Since we expect that  the electron spin dynamics will be fast on the time-scale of NMR 

experiments we can 
 
 
 
In order to calculate the spin density at the nuclear site, we start with the Bloch WF 
 
 
 
We need to consider only states at the Fermi level 
Putting everything together we derive 
 
With a Knight shift 
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Example - Pnictides 

(La3+O2–)+(FeAs)– 

Ba2+(Fe2As2)2– Li+(FeAs)– 

Se atom has one extra electron 
compared to an As atom,  
Se2+: (4s)2(4p)6 As3-: (4s)2(4p)6 

Chu et al., 
Nat. Phys. 5, 788 (2009) 
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Chu et al., 
Nat. Phys. 5, 787 (2009) 
 
SC: superconducting 
AFI: AFM insulating 
SDW: spin density wave 

1. AFI phase next to SC is a hallmark of electron 
correlations. Correlations are strong and onsite. 

2. No symmetry change through MIT! 
3. Charge versus pressure controle of SC! 
 

4. No disorder caused by the doping (off 
stoichiometries ...) 
5. 3D vs 2D! 
6. Importance of cubic symmetry! 

Also see our papers 
Science 323, 1585 (2009) 
Nature 466, 221-225 (2010) 
Phys. Rev. B80, 195424 (2009) 



Example: NMR in magnetically ordered state 
SDW in pnictides (1111 phase)

 

Cruz et al., Nature 453, 899 (2008) 

Yildirim, arXiv:0804.2252 

Fully frustrated 

The frustration is lifted by 
a structural distortion 

•SDW order with Q=(p,p) for 2a 
x 2a due to the interband 
nesting between the hole - and 
electron -bands 
•magnetic moments ~ 0.3 mB 
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Fe3 Fe4 

Symmetry considerations: mirror reflection with respect 
to bc plane 

AF phase – taken from LaOFeAs data 
Q = (1, 0, 1)  
Fe magnetic moments are aligned along the a−axis 
μFe ~ 0.3μB 

cFexzAs eaB ˆ4 = m


    cos1 0int

2

0int0 BBBBBBeff =

ONLY OFF-DIAGONAL TERMS!!!! 

PM phase: 0HM


=

04 Baxx =

ONLY ISOTROPIC PART!!!! 

Example: NMR in magnetically ordered state 
SDW in pnictides (1111 phase)

 



Example: NMR in magnetically ordered state 
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NdOFeAs 
T phase: As reside on the 
2c (1/4, 1/4, z) position, 
which is axially symmetric.  
 = (Vxx-Vyy)/Vzz = 0 
Q = 3 eVzzQ/ 2I(2I−1) 
=11.8 MHz 
 
NdFeAsO0.85F0.15 

Q = 12.8 MHz 

comparison 
(LaO0.9F0.1FeAs: Q = 11 MHz) 

Low-T orthorhombic phase: As is 
on 4g (0, 1/4, z) position, 
=0.102 

ONSET OF LOCAL MAGNETIC 
FIELDS 

PHYSICAL REVIEW B 79, 094515 2009 

EFG mainly originates from As 4p 
Electrons with a prolate p electron 
distribution in agreement with the 
negative Vzz. 

   g ,, )2()1(

1 QQeffAsmm B =

Axz=10.5 kOe/mB 

large anisotropic hyperfine fields → experimental 
evidence for the Fe 3d and As 4p hybridizations 



‘111’ family 

LiFeAs 

M.J. Pitcher et al.,  
Chemical Communications 5918 - 5920 (2008). 

NaFeAs 

D.R. Parker et al.,  
PRL 104, 057007 (2010). 

Bulk superconductor 

SDW below TSDW = 45 K 

They are isostructural 



23Na (I = 3/2) NMR in NaFeAs 
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60 K

Q = 530 kHz and the electric field gradient 
(EFG) asymmetry parameter η = 0, in 
agreement with the high-temperature Na 
site symmetry. 
 
No structural phase transition between RT 

and 60 K 



23Na (I = 3/2) NMR in NaxFeAs 
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They are isostructural! 
Na vacancies in Na-deficient 
samples are expected to 
result in the local disorder 
and thus broadened NMR 
lines, which is in contrast to 
the measured 23Na central 
transition linewidth in the 
temperature range 50 − 300K 
 Na+ migration?? 

Lineshape broadening is a 
clear indication of SDW 
transition. 
Variation of SDW order 
paramater with x. 
Still single line so NO phase 
segregation in this case. 

Klanjšek et al.,  
PHYSICAL REVIEW B 84, 054528 (2011) 



Incommensurate SDW vs. other solutions 

Commensurate SDW Commensurate SDW order 
with large local amplitude 
variations in the vicinity of 
the dopant Curro et al 
(2010). 

INCOMMENSURATE 
SDW 
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NdOFeAs; P. Jeglič, PRB 2009 
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Bint = B0 sin α  
with α ∈ [0, 2π] and  
B0 = 0.45 T 
ordering vector  
(1/2− ϵ,0,1/2) for ϵ → 0 
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IC SDW amplitude of  
x=1  0.28μB  
x=0.9 0.04μB 

x=0.8  0.13μB  



75As (I = 3/2) NMR in NaxFeAs for T<TSDW: Nature of the order? 
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Still no structural phase 
transition, but some 
distribution due to local 
inhomogeneities 

Structural phase with 
low-temperature 
tetragonal phase 
between 60 K and TSDW  

THE MAGNETIC ORDER 
IS INCOMMENSURATE!!! 

Klanjšek et al.,  
PHYSICAL REVIEW B 84, 054528 (2011) 



LiFeAs – 75As NMR 
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•Axially symetric tensor in agreement with the 75As site symmetry 
•Weakly temperature dependent Q 

•No annomalies that would indicate SDW transition 
•Below Tc 16 K (9 T) – wipeout effect => onset of SC 

Jeglič et al., 
PHYSICAL REVIEW B 81, 
140511R (2010) 



Spin-lattice relaxation time 
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Lets recall that 

In order to calculate spin-lattice relaxation, we should look at the terms in the spin 
Hamiltonian that produce transitions between energy levels => we need 
transverse time-dependent magnetic field  
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Spin-lattice relaxation time 
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Fermi golden rule 
 
 
 
 
We next use the definition of Dirac’s delta function 
 
 
And plug it into the above expression 
 
 
 
 
 
 
 
Spin-lattice relaxation time is then given by 
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Spin-lattice relaxation time – some 
simple considerations 
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Lets assume that the local magnetic field jumps between two sites with a typical 
correlation time t. Therefore, the probability for B to change is given by ½t with =1/t. 

S(t)S(0)=(1- ½t ) S2 + ½t (-S2)=S2(1- t) 
½t  1-½t  

S(Nt)S(0)= S2(1- t)N 

<S(t)S(0)>= S2e-t = S2e-t/t 

FT 
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Lets now assume, that the fluctuation field comes from the electronic field through 
the hyperfine coupling intercation 
 
 
Expressing B we finally get for T1  
 
 
 
 
 
 

After Fourier transformation 
 
 
 
Finally we fluctuation-dissipation theorem, which states 
 
 
To get T1 in the high-T expansion 
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Spin-lattice relaxation in metals 
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 rSIgH Bhf


 32

3

8
gm

p
=

The perturbing interaction is the s-contact 
interaction 
 
Transitions from state |k  m>  to |k  m+1> 
where m is the initial nuclear quantum number   
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We take Bloch WFs and calculate the corresponding matrix elements 
 
 
 
 
We make an approximation that all states in the vicinity of Fermi surface have 
approximately  the same probability density at the nucleus. Next we need to sum over 
all k and k’ states then we  can finaly write 
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It is important to bear in mind, that the sum over k,k’ is restricted to states fully occupied 
at k and empty at k’. The sum over k can be replaced by the integration over energy with 
introducing the density of states n(E), i.e. n(E) dE. The occupation restriction is eforced 
with the Fermi occupation function f(E)=[exp((E-EF)/kT)+1]-1. The summation then 
becomes 
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Famous Korringa relation 
The final result depends only on elementary 
constants and not on materials; this hold only for 
simple metals, where correlations can be neglected 



Korringa relation - examples 
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In practice, simple Korringa relation is not 
satisfied. Let’s check some simple alkali metals 

metal KS(%) T1T (exp) T1T (calc) ratio 

7Li 0.0263 45 Ks 26 Ks 0.58 

23Na 0.112 4.8 Ks 3.1 Ks 0.65 

63Cu 0.232 0.7 Ks 0.7 Ks 0.78 

Various corrections can be made to Korringa relation. In principle electron-electron 
interaction potential can enhance the spin susceptibility thus correcting K.R. in the right 
way.  
However, exchange fluctutations would also enhance spin-lattice relaxation. We will 
come to this point latter, but for now we just  introduce Korringa factor , which should 
be <1 (AFM) fluctutaions, >1 (FM) fluctuations  
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13C NMR in K3C60 

Yoshinari et al. (1993) 
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Various corrections can be made to Korringa relation. In principle electron-electron 
interaction potential can enhance the spin susceptibility thus correcting K.R. in the right 
way.  
However, exchange fluctutations would also enhance spin-lattice relaxation. We will 
come to this point latter, but for now we just  introduce Korringa factor , which should 
be <1 (AFM) fluctutaions, >1 (FM) fluctuations  
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Stoner enhancement factor 
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Spin-lattice relaxation time – some 
simple considerations 
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To a reasonable appoximation we may try to write 
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C 

Example: YBa2Cu3O7-y 

Moriya expression 
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Spin-lattice relaxation time – critical 
fluctuations 
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Enhancement  of 1/T1 close to TN 

Yildirim, PRL 101, 057010 (2008) 
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Example: LiFeAs 

Localized Fe2+ spins Itinerant Fe 3d electrons 

57Fe 

75As 
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For noninteracting spins 
can be taken out of the summation. In this limit we 
can calculate 0 and 0’ for the localized spins and 
itinerant scenario. If  
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Supported by density-functional calculations: 
- Katrin Koch & Helge Rosner, MPI-CPfS 
- Calculated electric-field gradients correctly 
reproduce the experimental values for both 
75As and 7Li sites.    

Jeglič et al., ArXiv: 0912.0692 

A B 



Example: AFM fluctuations in LiFeAs 

How strong are AFM fluctuations in LiFeAs? 
1. We cannot unambiguously discriminate between the on-site Fermi contact (itinerant) and 
the transferred coupling mechanism (localized moment at the Fe sites). 
2. Cross-terms between different bands in the LiFeAs multiband structure can modify Korringa 
relation. 

Korringa factor , measured for LiFeAs (green 
circles) and SrFe2As2 (red circles). Horizontal 
dashed lines indicate expected  values for 
noninteracting electrons. 
 
If the transferred coupling is active, 1/T1T is 
enhanced for a factor of 15±5! 
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Summary 

NMR = local, real-space probe where the behaviour of nuclear spins can be monitored 
on a site-to-site basis. 
 
Observables: 
- NMR spectrum 
- Relaxation rates 

 
Hyperfine interaction (Fermi contact, transferred hf, dipolar interaction) 
 
Knight shift, shift in the superconducting state 
 
Spin-lattice relaxation rate, Korringa relation  
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